Riboflavin kinase couples TNF receptor 1 to NADPH oxidase
Riboflavin kinase: linking TNF receptor to NAPDH oxidation Riboflavin kinase has been identified as a novel interacting partner for the death domain of receptor-1 for tumour necrosis factor (TNF-R1). It is required to recruit to and functionally couple p22 phox to TNF-R1. As p22 phox is the catalyti...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2009-08, Vol.460 (7259), p.1159-1163 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1163 |
---|---|
container_issue | 7259 |
container_start_page | 1159 |
container_title | Nature (London) |
container_volume | 460 |
creator | Yazdanpanah, Benjamin Wiegmann, Katja Tchikov, Vladimir Krut, Oleg Pongratz, Carola Schramm, Michael Kleinridders, Andre Wunderlich, Thomas Kashkar, Hamid Utermöhlen, Olaf Brüning, Jens C. Schütze, Stefan Krönke, Martin |
description | Riboflavin kinase: linking TNF receptor to NAPDH oxidation
Riboflavin kinase has been identified as a novel interacting partner for the death domain of receptor-1 for tumour necrosis factor (TNF-R1). It is required to recruit to and functionally couple p22
phox
to TNF-R1. As p22
phox
is the catalytic subunit of NADPH oxidases Nox1–4, this has general implications for TNF-induced NADPH oxidase activation and reactive oxygen species (ROS) production by many cell types and tissues. These findings may also be of relevance to the role of ROS in host defence and in the pathogenesis of many diseases including inflammation or atherosclerosis.
Riboflavin kinase is shown to couple TNF receptor 1 to reactive oxygen production by the FAD-dependent NADPH oxidase.
Reactive oxygen species (ROS) produced by NADPH oxidase function as defence and signalling molecules related to innate immunity and various cellular responses
1
,
2
. The activation of NADPH oxidase in response to plasma membrane receptor activation depends on the phosphorylation of cytoplasmic oxidase subunits, their translocation to membranes and the assembly of all NADPH oxidase components
3
. Tumour necrosis factor (TNF) is a prominent stimulus of ROS production, but the molecular mechanisms by which TNF activates NADPH oxidase are poorly understood. Here we identify riboflavin kinase (RFK, formerly known as flavokinase
4
) as a previously unrecognized TNF-receptor-1 (TNFR1)-binding protein that physically and functionally couples TNFR1 to NADPH oxidase. In mouse and human cells, RFK binds to both the TNFR1-death domain and to p22
phox
, the common subunit of NADPH oxidase isoforms. RFK-mediated bridging of TNFR1 and p22
phox
is a prerequisite for TNF-induced but not for Toll-like-receptor-induced ROS production. Exogenous flavin mononucleotide or FAD was able to substitute fully for TNF stimulation of NADPH oxidase in RFK-deficient cells. RFK is rate-limiting in the synthesis of FAD, an essential prosthetic group of NADPH oxidase. The results suggest that TNF, through the activation of RFK, enhances the incorporation of FAD in NADPH oxidase enzymes, a critical step for the assembly and activation of NADPH oxidase. |
doi_str_mv | 10.1038/nature08206 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67623104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A207705798</galeid><sourcerecordid>A207705798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621t-4f0f3f018f6a29914f9ae4ddb609d7e962b444f9befd0e02fd1bfc828c4ea9b53</originalsourceid><addsrcrecordid>eNp10tFrEzEcB_AgiqvVJ9_lEBREb_6SS3PJY-mcG4wqs-Ljkcv9UjKvl1tyJ9t_b6TFrlLJQyD55Jvkx4-QlxROKRTyY6eHMSBIBuIRmVBeipwLWT4mEwAmc5CFOCHPYrwBgBkt-VNyQpXglCs-Iera1d62-pfrsp-u0xEz48e-xZitludZQIP94ENGs8Fny_nZ14vM37kmuefkidVtxBe7eUq-n39aLS7yqy-fLxfzq9wIRoecW7CFBSqt0Ewpyq3SyJumFqCaEpVgNedpsUbbAAKzDa2tkUwajlrVs2JK3m5z--BvR4xDtXHRYNvqDv0YK1EKVlDgCb7-B974MXTpbRUDPksfLlRC-RatdYuV66wfgjZr7DDo1ndoXVqeMyhLmJVK7kMPvOndbfUQnR5BaTS4ceZo6ruDA8kMeDes9Rhjdfnt-tC-_7-dr34slke1CT7GgLbqg9vocF9RqP60S_WgXZJ-tSvZWG-w2dtdfyTwZgd0NLq1QXfGxb-OUclmkGKn5MPWxbTVrTHsa3_s3t_BhNIf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204541439</pqid></control><display><type>article</type><title>Riboflavin kinase couples TNF receptor 1 to NADPH oxidase</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Yazdanpanah, Benjamin ; Wiegmann, Katja ; Tchikov, Vladimir ; Krut, Oleg ; Pongratz, Carola ; Schramm, Michael ; Kleinridders, Andre ; Wunderlich, Thomas ; Kashkar, Hamid ; Utermöhlen, Olaf ; Brüning, Jens C. ; Schütze, Stefan ; Krönke, Martin</creator><creatorcontrib>Yazdanpanah, Benjamin ; Wiegmann, Katja ; Tchikov, Vladimir ; Krut, Oleg ; Pongratz, Carola ; Schramm, Michael ; Kleinridders, Andre ; Wunderlich, Thomas ; Kashkar, Hamid ; Utermöhlen, Olaf ; Brüning, Jens C. ; Schütze, Stefan ; Krönke, Martin</creatorcontrib><description>Riboflavin kinase: linking TNF receptor to NAPDH oxidation
Riboflavin kinase has been identified as a novel interacting partner for the death domain of receptor-1 for tumour necrosis factor (TNF-R1). It is required to recruit to and functionally couple p22
phox
to TNF-R1. As p22
phox
is the catalytic subunit of NADPH oxidases Nox1–4, this has general implications for TNF-induced NADPH oxidase activation and reactive oxygen species (ROS) production by many cell types and tissues. These findings may also be of relevance to the role of ROS in host defence and in the pathogenesis of many diseases including inflammation or atherosclerosis.
Riboflavin kinase is shown to couple TNF receptor 1 to reactive oxygen production by the FAD-dependent NADPH oxidase.
Reactive oxygen species (ROS) produced by NADPH oxidase function as defence and signalling molecules related to innate immunity and various cellular responses
1
,
2
. The activation of NADPH oxidase in response to plasma membrane receptor activation depends on the phosphorylation of cytoplasmic oxidase subunits, their translocation to membranes and the assembly of all NADPH oxidase components
3
. Tumour necrosis factor (TNF) is a prominent stimulus of ROS production, but the molecular mechanisms by which TNF activates NADPH oxidase are poorly understood. Here we identify riboflavin kinase (RFK, formerly known as flavokinase
4
) as a previously unrecognized TNF-receptor-1 (TNFR1)-binding protein that physically and functionally couples TNFR1 to NADPH oxidase. In mouse and human cells, RFK binds to both the TNFR1-death domain and to p22
phox
, the common subunit of NADPH oxidase isoforms. RFK-mediated bridging of TNFR1 and p22
phox
is a prerequisite for TNF-induced but not for Toll-like-receptor-induced ROS production. Exogenous flavin mononucleotide or FAD was able to substitute fully for TNF stimulation of NADPH oxidase in RFK-deficient cells. RFK is rate-limiting in the synthesis of FAD, an essential prosthetic group of NADPH oxidase. The results suggest that TNF, through the activation of RFK, enhances the incorporation of FAD in NADPH oxidase enzymes, a critical step for the assembly and activation of NADPH oxidase.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature08206</identifier><identifier>PMID: 19641494</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Apoptosis ; Binding sites ; Biological and medical sciences ; Cell Line ; Cells ; Cytochrome b Group - metabolism ; E coli ; Enzyme Activation ; Fibroblasts ; Flavin Mononucleotide - metabolism ; Flavin-Adenine Dinucleotide - biosynthesis ; Flavin-Adenine Dinucleotide - metabolism ; Fundamental and applied biological sciences. Psychology ; Fundamental immunology ; General aspects. Ontogeny. Phylogeny ; HeLa Cells ; Humanities and Social Sciences ; Humans ; Immunobiology ; Isoenzymes - chemistry ; Isoenzymes - metabolism ; Kinases ; letter ; Membrane Glycoproteins - metabolism ; Mice ; multidisciplinary ; NADH, NADPH Oxidoreductases - metabolism ; NADPH Oxidase 1 ; NADPH Oxidase 2 ; NADPH Oxidases - chemistry ; NADPH Oxidases - metabolism ; Neurons ; Nitric oxide ; Oxidases ; Phosphotransferases ; Phosphotransferases (Alcohol Group Acceptor) - deficiency ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Physiological aspects ; Protein Binding ; Protein Structure, Tertiary ; Reactive Oxygen Species - metabolism ; Receptors, Tumor Necrosis Factor, Type I - chemistry ; Receptors, Tumor Necrosis Factor, Type I - metabolism ; Science ; Science (multidisciplinary) ; Translocation ; Tumor necrosis factor ; Vitamin B2</subject><ispartof>Nature (London), 2009-08, Vol.460 (7259), p.1159-1163</ispartof><rights>Macmillan Publishers Limited. All rights reserved 2009</rights><rights>2009 INIST-CNRS</rights><rights>COPYRIGHT 2009 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 27, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c621t-4f0f3f018f6a29914f9ae4ddb609d7e962b444f9befd0e02fd1bfc828c4ea9b53</citedby><cites>FETCH-LOGICAL-c621t-4f0f3f018f6a29914f9ae4ddb609d7e962b444f9befd0e02fd1bfc828c4ea9b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature08206$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature08206$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21825010$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19641494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yazdanpanah, Benjamin</creatorcontrib><creatorcontrib>Wiegmann, Katja</creatorcontrib><creatorcontrib>Tchikov, Vladimir</creatorcontrib><creatorcontrib>Krut, Oleg</creatorcontrib><creatorcontrib>Pongratz, Carola</creatorcontrib><creatorcontrib>Schramm, Michael</creatorcontrib><creatorcontrib>Kleinridders, Andre</creatorcontrib><creatorcontrib>Wunderlich, Thomas</creatorcontrib><creatorcontrib>Kashkar, Hamid</creatorcontrib><creatorcontrib>Utermöhlen, Olaf</creatorcontrib><creatorcontrib>Brüning, Jens C.</creatorcontrib><creatorcontrib>Schütze, Stefan</creatorcontrib><creatorcontrib>Krönke, Martin</creatorcontrib><title>Riboflavin kinase couples TNF receptor 1 to NADPH oxidase</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Riboflavin kinase: linking TNF receptor to NAPDH oxidation
Riboflavin kinase has been identified as a novel interacting partner for the death domain of receptor-1 for tumour necrosis factor (TNF-R1). It is required to recruit to and functionally couple p22
phox
to TNF-R1. As p22
phox
is the catalytic subunit of NADPH oxidases Nox1–4, this has general implications for TNF-induced NADPH oxidase activation and reactive oxygen species (ROS) production by many cell types and tissues. These findings may also be of relevance to the role of ROS in host defence and in the pathogenesis of many diseases including inflammation or atherosclerosis.
Riboflavin kinase is shown to couple TNF receptor 1 to reactive oxygen production by the FAD-dependent NADPH oxidase.
Reactive oxygen species (ROS) produced by NADPH oxidase function as defence and signalling molecules related to innate immunity and various cellular responses
1
,
2
. The activation of NADPH oxidase in response to plasma membrane receptor activation depends on the phosphorylation of cytoplasmic oxidase subunits, their translocation to membranes and the assembly of all NADPH oxidase components
3
. Tumour necrosis factor (TNF) is a prominent stimulus of ROS production, but the molecular mechanisms by which TNF activates NADPH oxidase are poorly understood. Here we identify riboflavin kinase (RFK, formerly known as flavokinase
4
) as a previously unrecognized TNF-receptor-1 (TNFR1)-binding protein that physically and functionally couples TNFR1 to NADPH oxidase. In mouse and human cells, RFK binds to both the TNFR1-death domain and to p22
phox
, the common subunit of NADPH oxidase isoforms. RFK-mediated bridging of TNFR1 and p22
phox
is a prerequisite for TNF-induced but not for Toll-like-receptor-induced ROS production. Exogenous flavin mononucleotide or FAD was able to substitute fully for TNF stimulation of NADPH oxidase in RFK-deficient cells. RFK is rate-limiting in the synthesis of FAD, an essential prosthetic group of NADPH oxidase. The results suggest that TNF, through the activation of RFK, enhances the incorporation of FAD in NADPH oxidase enzymes, a critical step for the assembly and activation of NADPH oxidase.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Binding sites</subject><subject>Biological and medical sciences</subject><subject>Cell Line</subject><subject>Cells</subject><subject>Cytochrome b Group - metabolism</subject><subject>E coli</subject><subject>Enzyme Activation</subject><subject>Fibroblasts</subject><subject>Flavin Mononucleotide - metabolism</subject><subject>Flavin-Adenine Dinucleotide - biosynthesis</subject><subject>Flavin-Adenine Dinucleotide - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental immunology</subject><subject>General aspects. Ontogeny. Phylogeny</subject><subject>HeLa Cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immunobiology</subject><subject>Isoenzymes - chemistry</subject><subject>Isoenzymes - metabolism</subject><subject>Kinases</subject><subject>letter</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>NADH, NADPH Oxidoreductases - metabolism</subject><subject>NADPH Oxidase 1</subject><subject>NADPH Oxidase 2</subject><subject>NADPH Oxidases - chemistry</subject><subject>NADPH Oxidases - metabolism</subject><subject>Neurons</subject><subject>Nitric oxide</subject><subject>Oxidases</subject><subject>Phosphotransferases</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - deficiency</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Receptors, Tumor Necrosis Factor, Type I - chemistry</subject><subject>Receptors, Tumor Necrosis Factor, Type I - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Translocation</subject><subject>Tumor necrosis factor</subject><subject>Vitamin B2</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10tFrEzEcB_AgiqvVJ9_lEBREb_6SS3PJY-mcG4wqs-Ljkcv9UjKvl1tyJ9t_b6TFrlLJQyD55Jvkx4-QlxROKRTyY6eHMSBIBuIRmVBeipwLWT4mEwAmc5CFOCHPYrwBgBkt-VNyQpXglCs-Iera1d62-pfrsp-u0xEz48e-xZitludZQIP94ENGs8Fny_nZ14vM37kmuefkidVtxBe7eUq-n39aLS7yqy-fLxfzq9wIRoecW7CFBSqt0Ewpyq3SyJumFqCaEpVgNedpsUbbAAKzDa2tkUwajlrVs2JK3m5z--BvR4xDtXHRYNvqDv0YK1EKVlDgCb7-B974MXTpbRUDPksfLlRC-RatdYuV66wfgjZr7DDo1ndoXVqeMyhLmJVK7kMPvOndbfUQnR5BaTS4ceZo6ruDA8kMeDes9Rhjdfnt-tC-_7-dr34slke1CT7GgLbqg9vocF9RqP60S_WgXZJ-tSvZWG-w2dtdfyTwZgd0NLq1QXfGxb-OUclmkGKn5MPWxbTVrTHsa3_s3t_BhNIf</recordid><startdate>20090827</startdate><enddate>20090827</enddate><creator>Yazdanpanah, Benjamin</creator><creator>Wiegmann, Katja</creator><creator>Tchikov, Vladimir</creator><creator>Krut, Oleg</creator><creator>Pongratz, Carola</creator><creator>Schramm, Michael</creator><creator>Kleinridders, Andre</creator><creator>Wunderlich, Thomas</creator><creator>Kashkar, Hamid</creator><creator>Utermöhlen, Olaf</creator><creator>Brüning, Jens C.</creator><creator>Schütze, Stefan</creator><creator>Krönke, Martin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20090827</creationdate><title>Riboflavin kinase couples TNF receptor 1 to NADPH oxidase</title><author>Yazdanpanah, Benjamin ; Wiegmann, Katja ; Tchikov, Vladimir ; Krut, Oleg ; Pongratz, Carola ; Schramm, Michael ; Kleinridders, Andre ; Wunderlich, Thomas ; Kashkar, Hamid ; Utermöhlen, Olaf ; Brüning, Jens C. ; Schütze, Stefan ; Krönke, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621t-4f0f3f018f6a29914f9ae4ddb609d7e962b444f9befd0e02fd1bfc828c4ea9b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Binding sites</topic><topic>Biological and medical sciences</topic><topic>Cell Line</topic><topic>Cells</topic><topic>Cytochrome b Group - metabolism</topic><topic>E coli</topic><topic>Enzyme Activation</topic><topic>Fibroblasts</topic><topic>Flavin Mononucleotide - metabolism</topic><topic>Flavin-Adenine Dinucleotide - biosynthesis</topic><topic>Flavin-Adenine Dinucleotide - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental immunology</topic><topic>General aspects. Ontogeny. Phylogeny</topic><topic>HeLa Cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immunobiology</topic><topic>Isoenzymes - chemistry</topic><topic>Isoenzymes - metabolism</topic><topic>Kinases</topic><topic>letter</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>NADH, NADPH Oxidoreductases - metabolism</topic><topic>NADPH Oxidase 1</topic><topic>NADPH Oxidase 2</topic><topic>NADPH Oxidases - chemistry</topic><topic>NADPH Oxidases - metabolism</topic><topic>Neurons</topic><topic>Nitric oxide</topic><topic>Oxidases</topic><topic>Phosphotransferases</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - deficiency</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Receptors, Tumor Necrosis Factor, Type I - chemistry</topic><topic>Receptors, Tumor Necrosis Factor, Type I - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Translocation</topic><topic>Tumor necrosis factor</topic><topic>Vitamin B2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yazdanpanah, Benjamin</creatorcontrib><creatorcontrib>Wiegmann, Katja</creatorcontrib><creatorcontrib>Tchikov, Vladimir</creatorcontrib><creatorcontrib>Krut, Oleg</creatorcontrib><creatorcontrib>Pongratz, Carola</creatorcontrib><creatorcontrib>Schramm, Michael</creatorcontrib><creatorcontrib>Kleinridders, Andre</creatorcontrib><creatorcontrib>Wunderlich, Thomas</creatorcontrib><creatorcontrib>Kashkar, Hamid</creatorcontrib><creatorcontrib>Utermöhlen, Olaf</creatorcontrib><creatorcontrib>Brüning, Jens C.</creatorcontrib><creatorcontrib>Schütze, Stefan</creatorcontrib><creatorcontrib>Krönke, Martin</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yazdanpanah, Benjamin</au><au>Wiegmann, Katja</au><au>Tchikov, Vladimir</au><au>Krut, Oleg</au><au>Pongratz, Carola</au><au>Schramm, Michael</au><au>Kleinridders, Andre</au><au>Wunderlich, Thomas</au><au>Kashkar, Hamid</au><au>Utermöhlen, Olaf</au><au>Brüning, Jens C.</au><au>Schütze, Stefan</au><au>Krönke, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riboflavin kinase couples TNF receptor 1 to NADPH oxidase</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2009-08-27</date><risdate>2009</risdate><volume>460</volume><issue>7259</issue><spage>1159</spage><epage>1163</epage><pages>1159-1163</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Riboflavin kinase: linking TNF receptor to NAPDH oxidation
Riboflavin kinase has been identified as a novel interacting partner for the death domain of receptor-1 for tumour necrosis factor (TNF-R1). It is required to recruit to and functionally couple p22
phox
to TNF-R1. As p22
phox
is the catalytic subunit of NADPH oxidases Nox1–4, this has general implications for TNF-induced NADPH oxidase activation and reactive oxygen species (ROS) production by many cell types and tissues. These findings may also be of relevance to the role of ROS in host defence and in the pathogenesis of many diseases including inflammation or atherosclerosis.
Riboflavin kinase is shown to couple TNF receptor 1 to reactive oxygen production by the FAD-dependent NADPH oxidase.
Reactive oxygen species (ROS) produced by NADPH oxidase function as defence and signalling molecules related to innate immunity and various cellular responses
1
,
2
. The activation of NADPH oxidase in response to plasma membrane receptor activation depends on the phosphorylation of cytoplasmic oxidase subunits, their translocation to membranes and the assembly of all NADPH oxidase components
3
. Tumour necrosis factor (TNF) is a prominent stimulus of ROS production, but the molecular mechanisms by which TNF activates NADPH oxidase are poorly understood. Here we identify riboflavin kinase (RFK, formerly known as flavokinase
4
) as a previously unrecognized TNF-receptor-1 (TNFR1)-binding protein that physically and functionally couples TNFR1 to NADPH oxidase. In mouse and human cells, RFK binds to both the TNFR1-death domain and to p22
phox
, the common subunit of NADPH oxidase isoforms. RFK-mediated bridging of TNFR1 and p22
phox
is a prerequisite for TNF-induced but not for Toll-like-receptor-induced ROS production. Exogenous flavin mononucleotide or FAD was able to substitute fully for TNF stimulation of NADPH oxidase in RFK-deficient cells. RFK is rate-limiting in the synthesis of FAD, an essential prosthetic group of NADPH oxidase. The results suggest that TNF, through the activation of RFK, enhances the incorporation of FAD in NADPH oxidase enzymes, a critical step for the assembly and activation of NADPH oxidase.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19641494</pmid><doi>10.1038/nature08206</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2009-08, Vol.460 (7259), p.1159-1163 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_67623104 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature |
subjects | Animals Apoptosis Binding sites Biological and medical sciences Cell Line Cells Cytochrome b Group - metabolism E coli Enzyme Activation Fibroblasts Flavin Mononucleotide - metabolism Flavin-Adenine Dinucleotide - biosynthesis Flavin-Adenine Dinucleotide - metabolism Fundamental and applied biological sciences. Psychology Fundamental immunology General aspects. Ontogeny. Phylogeny HeLa Cells Humanities and Social Sciences Humans Immunobiology Isoenzymes - chemistry Isoenzymes - metabolism Kinases letter Membrane Glycoproteins - metabolism Mice multidisciplinary NADH, NADPH Oxidoreductases - metabolism NADPH Oxidase 1 NADPH Oxidase 2 NADPH Oxidases - chemistry NADPH Oxidases - metabolism Neurons Nitric oxide Oxidases Phosphotransferases Phosphotransferases (Alcohol Group Acceptor) - deficiency Phosphotransferases (Alcohol Group Acceptor) - genetics Phosphotransferases (Alcohol Group Acceptor) - metabolism Physiological aspects Protein Binding Protein Structure, Tertiary Reactive Oxygen Species - metabolism Receptors, Tumor Necrosis Factor, Type I - chemistry Receptors, Tumor Necrosis Factor, Type I - metabolism Science Science (multidisciplinary) Translocation Tumor necrosis factor Vitamin B2 |
title | Riboflavin kinase couples TNF receptor 1 to NADPH oxidase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riboflavin%20kinase%20couples%20TNF%20receptor%201%20to%20NADPH%20oxidase&rft.jtitle=Nature%20(London)&rft.au=Yazdanpanah,%20Benjamin&rft.date=2009-08-27&rft.volume=460&rft.issue=7259&rft.spage=1159&rft.epage=1163&rft.pages=1159-1163&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature08206&rft_dat=%3Cgale_proqu%3EA207705798%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204541439&rft_id=info:pmid/19641494&rft_galeid=A207705798&rfr_iscdi=true |