Riboflavin kinase couples TNF receptor 1 to NADPH oxidase

Riboflavin kinase: linking TNF receptor to NAPDH oxidation Riboflavin kinase has been identified as a novel interacting partner for the death domain of receptor-1 for tumour necrosis factor (TNF-R1). It is required to recruit to and functionally couple p22 phox to TNF-R1. As p22 phox is the catalyti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2009-08, Vol.460 (7259), p.1159-1163
Hauptverfasser: Yazdanpanah, Benjamin, Wiegmann, Katja, Tchikov, Vladimir, Krut, Oleg, Pongratz, Carola, Schramm, Michael, Kleinridders, Andre, Wunderlich, Thomas, Kashkar, Hamid, Utermöhlen, Olaf, Brüning, Jens C., Schütze, Stefan, Krönke, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1163
container_issue 7259
container_start_page 1159
container_title Nature (London)
container_volume 460
creator Yazdanpanah, Benjamin
Wiegmann, Katja
Tchikov, Vladimir
Krut, Oleg
Pongratz, Carola
Schramm, Michael
Kleinridders, Andre
Wunderlich, Thomas
Kashkar, Hamid
Utermöhlen, Olaf
Brüning, Jens C.
Schütze, Stefan
Krönke, Martin
description Riboflavin kinase: linking TNF receptor to NAPDH oxidation Riboflavin kinase has been identified as a novel interacting partner for the death domain of receptor-1 for tumour necrosis factor (TNF-R1). It is required to recruit to and functionally couple p22 phox to TNF-R1. As p22 phox is the catalytic subunit of NADPH oxidases Nox1–4, this has general implications for TNF-induced NADPH oxidase activation and reactive oxygen species (ROS) production by many cell types and tissues. These findings may also be of relevance to the role of ROS in host defence and in the pathogenesis of many diseases including inflammation or atherosclerosis. Riboflavin kinase is shown to couple TNF receptor 1 to reactive oxygen production by the FAD-dependent NADPH oxidase. Reactive oxygen species (ROS) produced by NADPH oxidase function as defence and signalling molecules related to innate immunity and various cellular responses 1 , 2 . The activation of NADPH oxidase in response to plasma membrane receptor activation depends on the phosphorylation of cytoplasmic oxidase subunits, their translocation to membranes and the assembly of all NADPH oxidase components 3 . Tumour necrosis factor (TNF) is a prominent stimulus of ROS production, but the molecular mechanisms by which TNF activates NADPH oxidase are poorly understood. Here we identify riboflavin kinase (RFK, formerly known as flavokinase 4 ) as a previously unrecognized TNF-receptor-1 (TNFR1)-binding protein that physically and functionally couples TNFR1 to NADPH oxidase. In mouse and human cells, RFK binds to both the TNFR1-death domain and to p22 phox , the common subunit of NADPH oxidase isoforms. RFK-mediated bridging of TNFR1 and p22 phox is a prerequisite for TNF-induced but not for Toll-like-receptor-induced ROS production. Exogenous flavin mononucleotide or FAD was able to substitute fully for TNF stimulation of NADPH oxidase in RFK-deficient cells. RFK is rate-limiting in the synthesis of FAD, an essential prosthetic group of NADPH oxidase. The results suggest that TNF, through the activation of RFK, enhances the incorporation of FAD in NADPH oxidase enzymes, a critical step for the assembly and activation of NADPH oxidase.
doi_str_mv 10.1038/nature08206
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67623104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A207705798</galeid><sourcerecordid>A207705798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621t-4f0f3f018f6a29914f9ae4ddb609d7e962b444f9befd0e02fd1bfc828c4ea9b53</originalsourceid><addsrcrecordid>eNp10tFrEzEcB_AgiqvVJ9_lEBREb_6SS3PJY-mcG4wqs-Ljkcv9UjKvl1tyJ9t_b6TFrlLJQyD55Jvkx4-QlxROKRTyY6eHMSBIBuIRmVBeipwLWT4mEwAmc5CFOCHPYrwBgBkt-VNyQpXglCs-Iera1d62-pfrsp-u0xEz48e-xZitludZQIP94ENGs8Fny_nZ14vM37kmuefkidVtxBe7eUq-n39aLS7yqy-fLxfzq9wIRoecW7CFBSqt0Ewpyq3SyJumFqCaEpVgNedpsUbbAAKzDa2tkUwajlrVs2JK3m5z--BvR4xDtXHRYNvqDv0YK1EKVlDgCb7-B974MXTpbRUDPksfLlRC-RatdYuV66wfgjZr7DDo1ndoXVqeMyhLmJVK7kMPvOndbfUQnR5BaTS4ceZo6ruDA8kMeDes9Rhjdfnt-tC-_7-dr34slke1CT7GgLbqg9vocF9RqP60S_WgXZJ-tSvZWG-w2dtdfyTwZgd0NLq1QXfGxb-OUclmkGKn5MPWxbTVrTHsa3_s3t_BhNIf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204541439</pqid></control><display><type>article</type><title>Riboflavin kinase couples TNF receptor 1 to NADPH oxidase</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Yazdanpanah, Benjamin ; Wiegmann, Katja ; Tchikov, Vladimir ; Krut, Oleg ; Pongratz, Carola ; Schramm, Michael ; Kleinridders, Andre ; Wunderlich, Thomas ; Kashkar, Hamid ; Utermöhlen, Olaf ; Brüning, Jens C. ; Schütze, Stefan ; Krönke, Martin</creator><creatorcontrib>Yazdanpanah, Benjamin ; Wiegmann, Katja ; Tchikov, Vladimir ; Krut, Oleg ; Pongratz, Carola ; Schramm, Michael ; Kleinridders, Andre ; Wunderlich, Thomas ; Kashkar, Hamid ; Utermöhlen, Olaf ; Brüning, Jens C. ; Schütze, Stefan ; Krönke, Martin</creatorcontrib><description>Riboflavin kinase: linking TNF receptor to NAPDH oxidation Riboflavin kinase has been identified as a novel interacting partner for the death domain of receptor-1 for tumour necrosis factor (TNF-R1). It is required to recruit to and functionally couple p22 phox to TNF-R1. As p22 phox is the catalytic subunit of NADPH oxidases Nox1–4, this has general implications for TNF-induced NADPH oxidase activation and reactive oxygen species (ROS) production by many cell types and tissues. These findings may also be of relevance to the role of ROS in host defence and in the pathogenesis of many diseases including inflammation or atherosclerosis. Riboflavin kinase is shown to couple TNF receptor 1 to reactive oxygen production by the FAD-dependent NADPH oxidase. Reactive oxygen species (ROS) produced by NADPH oxidase function as defence and signalling molecules related to innate immunity and various cellular responses 1 , 2 . The activation of NADPH oxidase in response to plasma membrane receptor activation depends on the phosphorylation of cytoplasmic oxidase subunits, their translocation to membranes and the assembly of all NADPH oxidase components 3 . Tumour necrosis factor (TNF) is a prominent stimulus of ROS production, but the molecular mechanisms by which TNF activates NADPH oxidase are poorly understood. Here we identify riboflavin kinase (RFK, formerly known as flavokinase 4 ) as a previously unrecognized TNF-receptor-1 (TNFR1)-binding protein that physically and functionally couples TNFR1 to NADPH oxidase. In mouse and human cells, RFK binds to both the TNFR1-death domain and to p22 phox , the common subunit of NADPH oxidase isoforms. RFK-mediated bridging of TNFR1 and p22 phox is a prerequisite for TNF-induced but not for Toll-like-receptor-induced ROS production. Exogenous flavin mononucleotide or FAD was able to substitute fully for TNF stimulation of NADPH oxidase in RFK-deficient cells. RFK is rate-limiting in the synthesis of FAD, an essential prosthetic group of NADPH oxidase. The results suggest that TNF, through the activation of RFK, enhances the incorporation of FAD in NADPH oxidase enzymes, a critical step for the assembly and activation of NADPH oxidase.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature08206</identifier><identifier>PMID: 19641494</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Apoptosis ; Binding sites ; Biological and medical sciences ; Cell Line ; Cells ; Cytochrome b Group - metabolism ; E coli ; Enzyme Activation ; Fibroblasts ; Flavin Mononucleotide - metabolism ; Flavin-Adenine Dinucleotide - biosynthesis ; Flavin-Adenine Dinucleotide - metabolism ; Fundamental and applied biological sciences. Psychology ; Fundamental immunology ; General aspects. Ontogeny. Phylogeny ; HeLa Cells ; Humanities and Social Sciences ; Humans ; Immunobiology ; Isoenzymes - chemistry ; Isoenzymes - metabolism ; Kinases ; letter ; Membrane Glycoproteins - metabolism ; Mice ; multidisciplinary ; NADH, NADPH Oxidoreductases - metabolism ; NADPH Oxidase 1 ; NADPH Oxidase 2 ; NADPH Oxidases - chemistry ; NADPH Oxidases - metabolism ; Neurons ; Nitric oxide ; Oxidases ; Phosphotransferases ; Phosphotransferases (Alcohol Group Acceptor) - deficiency ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Physiological aspects ; Protein Binding ; Protein Structure, Tertiary ; Reactive Oxygen Species - metabolism ; Receptors, Tumor Necrosis Factor, Type I - chemistry ; Receptors, Tumor Necrosis Factor, Type I - metabolism ; Science ; Science (multidisciplinary) ; Translocation ; Tumor necrosis factor ; Vitamin B2</subject><ispartof>Nature (London), 2009-08, Vol.460 (7259), p.1159-1163</ispartof><rights>Macmillan Publishers Limited. All rights reserved 2009</rights><rights>2009 INIST-CNRS</rights><rights>COPYRIGHT 2009 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 27, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c621t-4f0f3f018f6a29914f9ae4ddb609d7e962b444f9befd0e02fd1bfc828c4ea9b53</citedby><cites>FETCH-LOGICAL-c621t-4f0f3f018f6a29914f9ae4ddb609d7e962b444f9befd0e02fd1bfc828c4ea9b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature08206$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature08206$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21825010$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19641494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yazdanpanah, Benjamin</creatorcontrib><creatorcontrib>Wiegmann, Katja</creatorcontrib><creatorcontrib>Tchikov, Vladimir</creatorcontrib><creatorcontrib>Krut, Oleg</creatorcontrib><creatorcontrib>Pongratz, Carola</creatorcontrib><creatorcontrib>Schramm, Michael</creatorcontrib><creatorcontrib>Kleinridders, Andre</creatorcontrib><creatorcontrib>Wunderlich, Thomas</creatorcontrib><creatorcontrib>Kashkar, Hamid</creatorcontrib><creatorcontrib>Utermöhlen, Olaf</creatorcontrib><creatorcontrib>Brüning, Jens C.</creatorcontrib><creatorcontrib>Schütze, Stefan</creatorcontrib><creatorcontrib>Krönke, Martin</creatorcontrib><title>Riboflavin kinase couples TNF receptor 1 to NADPH oxidase</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Riboflavin kinase: linking TNF receptor to NAPDH oxidation Riboflavin kinase has been identified as a novel interacting partner for the death domain of receptor-1 for tumour necrosis factor (TNF-R1). It is required to recruit to and functionally couple p22 phox to TNF-R1. As p22 phox is the catalytic subunit of NADPH oxidases Nox1–4, this has general implications for TNF-induced NADPH oxidase activation and reactive oxygen species (ROS) production by many cell types and tissues. These findings may also be of relevance to the role of ROS in host defence and in the pathogenesis of many diseases including inflammation or atherosclerosis. Riboflavin kinase is shown to couple TNF receptor 1 to reactive oxygen production by the FAD-dependent NADPH oxidase. Reactive oxygen species (ROS) produced by NADPH oxidase function as defence and signalling molecules related to innate immunity and various cellular responses 1 , 2 . The activation of NADPH oxidase in response to plasma membrane receptor activation depends on the phosphorylation of cytoplasmic oxidase subunits, their translocation to membranes and the assembly of all NADPH oxidase components 3 . Tumour necrosis factor (TNF) is a prominent stimulus of ROS production, but the molecular mechanisms by which TNF activates NADPH oxidase are poorly understood. Here we identify riboflavin kinase (RFK, formerly known as flavokinase 4 ) as a previously unrecognized TNF-receptor-1 (TNFR1)-binding protein that physically and functionally couples TNFR1 to NADPH oxidase. In mouse and human cells, RFK binds to both the TNFR1-death domain and to p22 phox , the common subunit of NADPH oxidase isoforms. RFK-mediated bridging of TNFR1 and p22 phox is a prerequisite for TNF-induced but not for Toll-like-receptor-induced ROS production. Exogenous flavin mononucleotide or FAD was able to substitute fully for TNF stimulation of NADPH oxidase in RFK-deficient cells. RFK is rate-limiting in the synthesis of FAD, an essential prosthetic group of NADPH oxidase. The results suggest that TNF, through the activation of RFK, enhances the incorporation of FAD in NADPH oxidase enzymes, a critical step for the assembly and activation of NADPH oxidase.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Binding sites</subject><subject>Biological and medical sciences</subject><subject>Cell Line</subject><subject>Cells</subject><subject>Cytochrome b Group - metabolism</subject><subject>E coli</subject><subject>Enzyme Activation</subject><subject>Fibroblasts</subject><subject>Flavin Mononucleotide - metabolism</subject><subject>Flavin-Adenine Dinucleotide - biosynthesis</subject><subject>Flavin-Adenine Dinucleotide - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental immunology</subject><subject>General aspects. Ontogeny. Phylogeny</subject><subject>HeLa Cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immunobiology</subject><subject>Isoenzymes - chemistry</subject><subject>Isoenzymes - metabolism</subject><subject>Kinases</subject><subject>letter</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>NADH, NADPH Oxidoreductases - metabolism</subject><subject>NADPH Oxidase 1</subject><subject>NADPH Oxidase 2</subject><subject>NADPH Oxidases - chemistry</subject><subject>NADPH Oxidases - metabolism</subject><subject>Neurons</subject><subject>Nitric oxide</subject><subject>Oxidases</subject><subject>Phosphotransferases</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - deficiency</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Receptors, Tumor Necrosis Factor, Type I - chemistry</subject><subject>Receptors, Tumor Necrosis Factor, Type I - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Translocation</subject><subject>Tumor necrosis factor</subject><subject>Vitamin B2</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10tFrEzEcB_AgiqvVJ9_lEBREb_6SS3PJY-mcG4wqs-Ljkcv9UjKvl1tyJ9t_b6TFrlLJQyD55Jvkx4-QlxROKRTyY6eHMSBIBuIRmVBeipwLWT4mEwAmc5CFOCHPYrwBgBkt-VNyQpXglCs-Iera1d62-pfrsp-u0xEz48e-xZitludZQIP94ENGs8Fny_nZ14vM37kmuefkidVtxBe7eUq-n39aLS7yqy-fLxfzq9wIRoecW7CFBSqt0Ewpyq3SyJumFqCaEpVgNedpsUbbAAKzDa2tkUwajlrVs2JK3m5z--BvR4xDtXHRYNvqDv0YK1EKVlDgCb7-B974MXTpbRUDPksfLlRC-RatdYuV66wfgjZr7DDo1ndoXVqeMyhLmJVK7kMPvOndbfUQnR5BaTS4ceZo6ruDA8kMeDes9Rhjdfnt-tC-_7-dr34slke1CT7GgLbqg9vocF9RqP60S_WgXZJ-tSvZWG-w2dtdfyTwZgd0NLq1QXfGxb-OUclmkGKn5MPWxbTVrTHsa3_s3t_BhNIf</recordid><startdate>20090827</startdate><enddate>20090827</enddate><creator>Yazdanpanah, Benjamin</creator><creator>Wiegmann, Katja</creator><creator>Tchikov, Vladimir</creator><creator>Krut, Oleg</creator><creator>Pongratz, Carola</creator><creator>Schramm, Michael</creator><creator>Kleinridders, Andre</creator><creator>Wunderlich, Thomas</creator><creator>Kashkar, Hamid</creator><creator>Utermöhlen, Olaf</creator><creator>Brüning, Jens C.</creator><creator>Schütze, Stefan</creator><creator>Krönke, Martin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20090827</creationdate><title>Riboflavin kinase couples TNF receptor 1 to NADPH oxidase</title><author>Yazdanpanah, Benjamin ; Wiegmann, Katja ; Tchikov, Vladimir ; Krut, Oleg ; Pongratz, Carola ; Schramm, Michael ; Kleinridders, Andre ; Wunderlich, Thomas ; Kashkar, Hamid ; Utermöhlen, Olaf ; Brüning, Jens C. ; Schütze, Stefan ; Krönke, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621t-4f0f3f018f6a29914f9ae4ddb609d7e962b444f9befd0e02fd1bfc828c4ea9b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Binding sites</topic><topic>Biological and medical sciences</topic><topic>Cell Line</topic><topic>Cells</topic><topic>Cytochrome b Group - metabolism</topic><topic>E coli</topic><topic>Enzyme Activation</topic><topic>Fibroblasts</topic><topic>Flavin Mononucleotide - metabolism</topic><topic>Flavin-Adenine Dinucleotide - biosynthesis</topic><topic>Flavin-Adenine Dinucleotide - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental immunology</topic><topic>General aspects. Ontogeny. Phylogeny</topic><topic>HeLa Cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immunobiology</topic><topic>Isoenzymes - chemistry</topic><topic>Isoenzymes - metabolism</topic><topic>Kinases</topic><topic>letter</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>NADH, NADPH Oxidoreductases - metabolism</topic><topic>NADPH Oxidase 1</topic><topic>NADPH Oxidase 2</topic><topic>NADPH Oxidases - chemistry</topic><topic>NADPH Oxidases - metabolism</topic><topic>Neurons</topic><topic>Nitric oxide</topic><topic>Oxidases</topic><topic>Phosphotransferases</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - deficiency</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Receptors, Tumor Necrosis Factor, Type I - chemistry</topic><topic>Receptors, Tumor Necrosis Factor, Type I - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Translocation</topic><topic>Tumor necrosis factor</topic><topic>Vitamin B2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yazdanpanah, Benjamin</creatorcontrib><creatorcontrib>Wiegmann, Katja</creatorcontrib><creatorcontrib>Tchikov, Vladimir</creatorcontrib><creatorcontrib>Krut, Oleg</creatorcontrib><creatorcontrib>Pongratz, Carola</creatorcontrib><creatorcontrib>Schramm, Michael</creatorcontrib><creatorcontrib>Kleinridders, Andre</creatorcontrib><creatorcontrib>Wunderlich, Thomas</creatorcontrib><creatorcontrib>Kashkar, Hamid</creatorcontrib><creatorcontrib>Utermöhlen, Olaf</creatorcontrib><creatorcontrib>Brüning, Jens C.</creatorcontrib><creatorcontrib>Schütze, Stefan</creatorcontrib><creatorcontrib>Krönke, Martin</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yazdanpanah, Benjamin</au><au>Wiegmann, Katja</au><au>Tchikov, Vladimir</au><au>Krut, Oleg</au><au>Pongratz, Carola</au><au>Schramm, Michael</au><au>Kleinridders, Andre</au><au>Wunderlich, Thomas</au><au>Kashkar, Hamid</au><au>Utermöhlen, Olaf</au><au>Brüning, Jens C.</au><au>Schütze, Stefan</au><au>Krönke, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riboflavin kinase couples TNF receptor 1 to NADPH oxidase</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2009-08-27</date><risdate>2009</risdate><volume>460</volume><issue>7259</issue><spage>1159</spage><epage>1163</epage><pages>1159-1163</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Riboflavin kinase: linking TNF receptor to NAPDH oxidation Riboflavin kinase has been identified as a novel interacting partner for the death domain of receptor-1 for tumour necrosis factor (TNF-R1). It is required to recruit to and functionally couple p22 phox to TNF-R1. As p22 phox is the catalytic subunit of NADPH oxidases Nox1–4, this has general implications for TNF-induced NADPH oxidase activation and reactive oxygen species (ROS) production by many cell types and tissues. These findings may also be of relevance to the role of ROS in host defence and in the pathogenesis of many diseases including inflammation or atherosclerosis. Riboflavin kinase is shown to couple TNF receptor 1 to reactive oxygen production by the FAD-dependent NADPH oxidase. Reactive oxygen species (ROS) produced by NADPH oxidase function as defence and signalling molecules related to innate immunity and various cellular responses 1 , 2 . The activation of NADPH oxidase in response to plasma membrane receptor activation depends on the phosphorylation of cytoplasmic oxidase subunits, their translocation to membranes and the assembly of all NADPH oxidase components 3 . Tumour necrosis factor (TNF) is a prominent stimulus of ROS production, but the molecular mechanisms by which TNF activates NADPH oxidase are poorly understood. Here we identify riboflavin kinase (RFK, formerly known as flavokinase 4 ) as a previously unrecognized TNF-receptor-1 (TNFR1)-binding protein that physically and functionally couples TNFR1 to NADPH oxidase. In mouse and human cells, RFK binds to both the TNFR1-death domain and to p22 phox , the common subunit of NADPH oxidase isoforms. RFK-mediated bridging of TNFR1 and p22 phox is a prerequisite for TNF-induced but not for Toll-like-receptor-induced ROS production. Exogenous flavin mononucleotide or FAD was able to substitute fully for TNF stimulation of NADPH oxidase in RFK-deficient cells. RFK is rate-limiting in the synthesis of FAD, an essential prosthetic group of NADPH oxidase. The results suggest that TNF, through the activation of RFK, enhances the incorporation of FAD in NADPH oxidase enzymes, a critical step for the assembly and activation of NADPH oxidase.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19641494</pmid><doi>10.1038/nature08206</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2009-08, Vol.460 (7259), p.1159-1163
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_67623104
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects Animals
Apoptosis
Binding sites
Biological and medical sciences
Cell Line
Cells
Cytochrome b Group - metabolism
E coli
Enzyme Activation
Fibroblasts
Flavin Mononucleotide - metabolism
Flavin-Adenine Dinucleotide - biosynthesis
Flavin-Adenine Dinucleotide - metabolism
Fundamental and applied biological sciences. Psychology
Fundamental immunology
General aspects. Ontogeny. Phylogeny
HeLa Cells
Humanities and Social Sciences
Humans
Immunobiology
Isoenzymes - chemistry
Isoenzymes - metabolism
Kinases
letter
Membrane Glycoproteins - metabolism
Mice
multidisciplinary
NADH, NADPH Oxidoreductases - metabolism
NADPH Oxidase 1
NADPH Oxidase 2
NADPH Oxidases - chemistry
NADPH Oxidases - metabolism
Neurons
Nitric oxide
Oxidases
Phosphotransferases
Phosphotransferases (Alcohol Group Acceptor) - deficiency
Phosphotransferases (Alcohol Group Acceptor) - genetics
Phosphotransferases (Alcohol Group Acceptor) - metabolism
Physiological aspects
Protein Binding
Protein Structure, Tertiary
Reactive Oxygen Species - metabolism
Receptors, Tumor Necrosis Factor, Type I - chemistry
Receptors, Tumor Necrosis Factor, Type I - metabolism
Science
Science (multidisciplinary)
Translocation
Tumor necrosis factor
Vitamin B2
title Riboflavin kinase couples TNF receptor 1 to NADPH oxidase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riboflavin%20kinase%20couples%20TNF%20receptor%201%20to%20NADPH%20oxidase&rft.jtitle=Nature%20(London)&rft.au=Yazdanpanah,%20Benjamin&rft.date=2009-08-27&rft.volume=460&rft.issue=7259&rft.spage=1159&rft.epage=1163&rft.pages=1159-1163&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature08206&rft_dat=%3Cgale_proqu%3EA207705798%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204541439&rft_id=info:pmid/19641494&rft_galeid=A207705798&rfr_iscdi=true