Galectin-3 and Galectin-1 Bind Distinct Cell Surface Glycoprotein Receptors to Induce T Cell Death
Galectins are a family of mammalian beta-galactoside-binding proteins that positively and negatively regulate T cell death. Extracellular galectin-1 directly induces death of T cells and thymocytes, while intracellular galectin-3 blocks T cell death. In contrast to the antiapoptotic function of intr...
Gespeichert in:
Veröffentlicht in: | Journal of Immunology 2006-01, Vol.176 (2), p.778-789 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Galectins are a family of mammalian beta-galactoside-binding proteins that positively and negatively regulate T cell death. Extracellular galectin-1 directly induces death of T cells and thymocytes, while intracellular galectin-3 blocks T cell death. In contrast to the antiapoptotic function of intracellular galectin-3, we demonstrate that extracellular galectin-3 directly induces death of human thymocytes and T cells. However, events in galectin-3- and galectin-1-induced cell death differ in a number of ways. Thymocyte subsets demonstrate different susceptibility to the two galectins: whereas galectin-1 kills double-negative and double-positive human thymocytes with equal efficiency, galectin-3 preferentially kills double-negative thymocytes. Galectin-3 binds to a complement of T cell surface glycoprotein receptors distinct from that recognized by galectin-1. Of these glycoprotein receptors, CD45 and CD71, but not CD29 and CD43, appear to be involved in galectin-3-induced T cell death. In addition, CD7 that is required for galectin-1-induced death is not required for death triggered by galectin-3. Following galectin-3 binding, CD45 remains uniformly distributed on the cell surface, in contrast to the CD45 clustering induced by galectin-1. Thus, extracellular galectin-3 and galectin-1 induce death of T cells through distinct cell surface events. However, as galectin-3 and galectin-1 cell death are neither additive nor synergistic, the two death pathways may converge inside the cell. |
---|---|
ISSN: | 0022-1767 1550-6606 1365-2567 |
DOI: | 10.4049/jimmunol.176.2.778 |