Burgundy-blood phenomenon: a model of buoyancy change explains autumnal waterblooms by Planktothrix rubescens in Lake Zurich

$\bullet$ Buoyancy changes of the cyanobacterium Planktothrix rubescens - the Burgundy-blood alga - were modelled from its buoyancy response to light and irradiance changes in Lake $Z\ddot{u}rich$ during autumnal mixing. $\bullet$ The daily insolation received by filaments at fixed depths and circul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2006-01, Vol.169 (1), p.109-122
Hauptverfasser: Walsby, Anthony E., Schanz, Ferdinand, Schmid, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122
container_issue 1
container_start_page 109
container_title The New phytologist
container_volume 169
creator Walsby, Anthony E.
Schanz, Ferdinand
Schmid, Martin
description $\bullet$ Buoyancy changes of the cyanobacterium Planktothrix rubescens - the Burgundy-blood alga - were modelled from its buoyancy response to light and irradiance changes in Lake $Z\ddot{u}rich$ during autumnal mixing. $\bullet$ The daily insolation received by filaments at fixed depths and circulating to different depths was calculated from the measured light attenuation and surface irradiance. The active mixing depth, $z_{a5}$, was determined from the vertical turbulent diffusion coefficient, Kz, calculated from the wind speed, heat flux and temperature gradients. The fixed depth resulting in filament buoyancy, zn, decreased from 13 to 2 m between August and December 1998; the critical depth for buoyancy, zq, to which filaments must be circulated to become buoyant, decreased from >60 m in the summer to z_{a5}$: circulating filaments would have lost buoyancy in the high insolation. Often in November and December, after deeper mixing and lower insolation, $z_{a5} > z_q$: filaments would have become buoyant but would have floated to the lake surface (the Burgundy-blood phenomenon) only under subsequent calm conditions, when Kz was low. $\bullet$ The model explains the Burgundy-blood phenomenon in deeper lakes; waterblooms near shallow leeward shores arise from populations floating up in deeper regions of the lake.
doi_str_mv 10.1111/j.1469-8137.2005.01567.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67604034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3694364</jstor_id><sourcerecordid>3694364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5587-a7c141ff8f45cb0be98d373942492b9a18d7aa0a5d1361d27ed1613b5a0724b63</originalsourceid><addsrcrecordid>eNqNkF-L1DAUxYMo7rj6DUTzom-tSfOvFXzQRV1h0AVdEF_CTZvOdLZtxqRhp-CHN3WG3VcDIYH7O_eeexDClOQ0nTe7nHJZZSVlKi8IETmhQqr88ACt7goP0YqQoswklz_P0JMQdoSQSsjiMTqjklWEF2yF_nyIfhPHZs5M71yD91s7uiHd8S0GPLjG9ti12EQ3w1jPuN7CuLHYHvY9dGPAEKc4jNDjW5isX3oMAZsZX_Uw3kxu2vrugH00NtQ24d2I13Bj8a_ou3r7FD1qoQ_22ek9R9efPv64uMzW3z5_uXi_zmohSpWBqimnbVu2XNSGGFuVDVOs4gWvClMBLRsFQEA0lEnaFMo2VFJmBBBVcCPZOXp97Lv37ne0YdJDl_z0yaN1MWipJOGE8QSWR7D2LgRvW7333QB-1pToJXm900vAeglYL8nrf8nrQ5K-OM2IZrDNvfAUdQJenQAINfStT3l24Z5TgqSdROLeHbnbrrfzfxvQX68ul1_SPz_qd2Fy_k7PZMWZXFZ8eSy34DRsfLJw_b0glBFKeKk4Y38BAG6zcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67604034</pqid></control><display><type>article</type><title>Burgundy-blood phenomenon: a model of buoyancy change explains autumnal waterblooms by Planktothrix rubescens in Lake Zurich</title><source>Jstor Complete Legacy</source><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Walsby, Anthony E. ; Schanz, Ferdinand ; Schmid, Martin</creator><creatorcontrib>Walsby, Anthony E. ; Schanz, Ferdinand ; Schmid, Martin</creatorcontrib><description>$\bullet$ Buoyancy changes of the cyanobacterium Planktothrix rubescens - the Burgundy-blood alga - were modelled from its buoyancy response to light and irradiance changes in Lake $Z\ddot{u}rich$ during autumnal mixing. $\bullet$ The daily insolation received by filaments at fixed depths and circulating to different depths was calculated from the measured light attenuation and surface irradiance. The active mixing depth, $z_{a5}$, was determined from the vertical turbulent diffusion coefficient, Kz, calculated from the wind speed, heat flux and temperature gradients. The fixed depth resulting in filament buoyancy, zn, decreased from 13 to 2 m between August and December 1998; the critical depth for buoyancy, zq, to which filaments must be circulated to become buoyant, decreased from &gt;60 m in the summer to &lt;10 m in winter. $\bullet$ When $z_{a5}$ first exceeded zn, in September, P. rubescens was mixed into the epilimnion. In October, $z_q &gt; z_{a5}$: circulating filaments would have lost buoyancy in the high insolation. Often in November and December, after deeper mixing and lower insolation, $z_{a5} &gt; z_q$: filaments would have become buoyant but would have floated to the lake surface (the Burgundy-blood phenomenon) only under subsequent calm conditions, when Kz was low. $\bullet$ The model explains the Burgundy-blood phenomenon in deeper lakes; waterblooms near shallow leeward shores arise from populations floating up in deeper regions of the lake.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/j.1469-8137.2005.01567.x</identifier><identifier>PMID: 16390423</identifier><identifier>CODEN: NEPHAV</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science</publisher><subject>algae and seaweeds ; Animal and plant ecology ; Animal, plant and microbial ecology ; Biological and medical sciences ; Buoyancy ; buoyancy regulation ; Burgundy blood ; Cyanobacteria ; Cyanobacteria - growth &amp; development ; Cyanobacteria - physiology ; Cyanobacteria - radiation effects ; Diffusion coefficient ; Fresh Water ; Fresh water ecosystems ; Fundamental and applied biological sciences. Psychology ; Insolation ; Irradiance ; Lake Zürich ; lakes ; Light ; mathematical models ; Mixing height ; Models, Biological ; Photons ; Planktothrix rubescens ; Seasons ; Serenity ; Surface layers ; Surface water ; Switzerland ; Synecology ; Temperature ; waterbloom formation</subject><ispartof>The New phytologist, 2006-01, Vol.169 (1), p.109-122</ispartof><rights>Copyright 2006 New Phytologist</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5587-a7c141ff8f45cb0be98d373942492b9a18d7aa0a5d1361d27ed1613b5a0724b63</citedby><cites>FETCH-LOGICAL-c5587-a7c141ff8f45cb0be98d373942492b9a18d7aa0a5d1361d27ed1613b5a0724b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3694364$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3694364$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17507395$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16390423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walsby, Anthony E.</creatorcontrib><creatorcontrib>Schanz, Ferdinand</creatorcontrib><creatorcontrib>Schmid, Martin</creatorcontrib><title>Burgundy-blood phenomenon: a model of buoyancy change explains autumnal waterblooms by Planktothrix rubescens in Lake Zurich</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>$\bullet$ Buoyancy changes of the cyanobacterium Planktothrix rubescens - the Burgundy-blood alga - were modelled from its buoyancy response to light and irradiance changes in Lake $Z\ddot{u}rich$ during autumnal mixing. $\bullet$ The daily insolation received by filaments at fixed depths and circulating to different depths was calculated from the measured light attenuation and surface irradiance. The active mixing depth, $z_{a5}$, was determined from the vertical turbulent diffusion coefficient, Kz, calculated from the wind speed, heat flux and temperature gradients. The fixed depth resulting in filament buoyancy, zn, decreased from 13 to 2 m between August and December 1998; the critical depth for buoyancy, zq, to which filaments must be circulated to become buoyant, decreased from &gt;60 m in the summer to &lt;10 m in winter. $\bullet$ When $z_{a5}$ first exceeded zn, in September, P. rubescens was mixed into the epilimnion. In October, $z_q &gt; z_{a5}$: circulating filaments would have lost buoyancy in the high insolation. Often in November and December, after deeper mixing and lower insolation, $z_{a5} &gt; z_q$: filaments would have become buoyant but would have floated to the lake surface (the Burgundy-blood phenomenon) only under subsequent calm conditions, when Kz was low. $\bullet$ The model explains the Burgundy-blood phenomenon in deeper lakes; waterblooms near shallow leeward shores arise from populations floating up in deeper regions of the lake.</description><subject>algae and seaweeds</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Buoyancy</subject><subject>buoyancy regulation</subject><subject>Burgundy blood</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - growth &amp; development</subject><subject>Cyanobacteria - physiology</subject><subject>Cyanobacteria - radiation effects</subject><subject>Diffusion coefficient</subject><subject>Fresh Water</subject><subject>Fresh water ecosystems</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Insolation</subject><subject>Irradiance</subject><subject>Lake Zürich</subject><subject>lakes</subject><subject>Light</subject><subject>mathematical models</subject><subject>Mixing height</subject><subject>Models, Biological</subject><subject>Photons</subject><subject>Planktothrix rubescens</subject><subject>Seasons</subject><subject>Serenity</subject><subject>Surface layers</subject><subject>Surface water</subject><subject>Switzerland</subject><subject>Synecology</subject><subject>Temperature</subject><subject>waterbloom formation</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkF-L1DAUxYMo7rj6DUTzom-tSfOvFXzQRV1h0AVdEF_CTZvOdLZtxqRhp-CHN3WG3VcDIYH7O_eeexDClOQ0nTe7nHJZZSVlKi8IETmhQqr88ACt7goP0YqQoswklz_P0JMQdoSQSsjiMTqjklWEF2yF_nyIfhPHZs5M71yD91s7uiHd8S0GPLjG9ti12EQ3w1jPuN7CuLHYHvY9dGPAEKc4jNDjW5isX3oMAZsZX_Uw3kxu2vrugH00NtQ24d2I13Bj8a_ou3r7FD1qoQ_22ek9R9efPv64uMzW3z5_uXi_zmohSpWBqimnbVu2XNSGGFuVDVOs4gWvClMBLRsFQEA0lEnaFMo2VFJmBBBVcCPZOXp97Lv37ne0YdJDl_z0yaN1MWipJOGE8QSWR7D2LgRvW7333QB-1pToJXm900vAeglYL8nrf8nrQ5K-OM2IZrDNvfAUdQJenQAINfStT3l24Z5TgqSdROLeHbnbrrfzfxvQX68ul1_SPz_qd2Fy_k7PZMWZXFZ8eSy34DRsfLJw_b0glBFKeKk4Y38BAG6zcA</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Walsby, Anthony E.</creator><creator>Schanz, Ferdinand</creator><creator>Schmid, Martin</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200601</creationdate><title>Burgundy-blood phenomenon: a model of buoyancy change explains autumnal waterblooms by Planktothrix rubescens in Lake Zurich</title><author>Walsby, Anthony E. ; Schanz, Ferdinand ; Schmid, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5587-a7c141ff8f45cb0be98d373942492b9a18d7aa0a5d1361d27ed1613b5a0724b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>algae and seaweeds</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Buoyancy</topic><topic>buoyancy regulation</topic><topic>Burgundy blood</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - growth &amp; development</topic><topic>Cyanobacteria - physiology</topic><topic>Cyanobacteria - radiation effects</topic><topic>Diffusion coefficient</topic><topic>Fresh Water</topic><topic>Fresh water ecosystems</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Insolation</topic><topic>Irradiance</topic><topic>Lake Zürich</topic><topic>lakes</topic><topic>Light</topic><topic>mathematical models</topic><topic>Mixing height</topic><topic>Models, Biological</topic><topic>Photons</topic><topic>Planktothrix rubescens</topic><topic>Seasons</topic><topic>Serenity</topic><topic>Surface layers</topic><topic>Surface water</topic><topic>Switzerland</topic><topic>Synecology</topic><topic>Temperature</topic><topic>waterbloom formation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walsby, Anthony E.</creatorcontrib><creatorcontrib>Schanz, Ferdinand</creatorcontrib><creatorcontrib>Schmid, Martin</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walsby, Anthony E.</au><au>Schanz, Ferdinand</au><au>Schmid, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Burgundy-blood phenomenon: a model of buoyancy change explains autumnal waterblooms by Planktothrix rubescens in Lake Zurich</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2006-01</date><risdate>2006</risdate><volume>169</volume><issue>1</issue><spage>109</spage><epage>122</epage><pages>109-122</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><coden>NEPHAV</coden><abstract>$\bullet$ Buoyancy changes of the cyanobacterium Planktothrix rubescens - the Burgundy-blood alga - were modelled from its buoyancy response to light and irradiance changes in Lake $Z\ddot{u}rich$ during autumnal mixing. $\bullet$ The daily insolation received by filaments at fixed depths and circulating to different depths was calculated from the measured light attenuation and surface irradiance. The active mixing depth, $z_{a5}$, was determined from the vertical turbulent diffusion coefficient, Kz, calculated from the wind speed, heat flux and temperature gradients. The fixed depth resulting in filament buoyancy, zn, decreased from 13 to 2 m between August and December 1998; the critical depth for buoyancy, zq, to which filaments must be circulated to become buoyant, decreased from &gt;60 m in the summer to &lt;10 m in winter. $\bullet$ When $z_{a5}$ first exceeded zn, in September, P. rubescens was mixed into the epilimnion. In October, $z_q &gt; z_{a5}$: circulating filaments would have lost buoyancy in the high insolation. Often in November and December, after deeper mixing and lower insolation, $z_{a5} &gt; z_q$: filaments would have become buoyant but would have floated to the lake surface (the Burgundy-blood phenomenon) only under subsequent calm conditions, when Kz was low. $\bullet$ The model explains the Burgundy-blood phenomenon in deeper lakes; waterblooms near shallow leeward shores arise from populations floating up in deeper regions of the lake.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science</pub><pmid>16390423</pmid><doi>10.1111/j.1469-8137.2005.01567.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2006-01, Vol.169 (1), p.109-122
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_67604034
source Jstor Complete Legacy; Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects algae and seaweeds
Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
Buoyancy
buoyancy regulation
Burgundy blood
Cyanobacteria
Cyanobacteria - growth & development
Cyanobacteria - physiology
Cyanobacteria - radiation effects
Diffusion coefficient
Fresh Water
Fresh water ecosystems
Fundamental and applied biological sciences. Psychology
Insolation
Irradiance
Lake Zürich
lakes
Light
mathematical models
Mixing height
Models, Biological
Photons
Planktothrix rubescens
Seasons
Serenity
Surface layers
Surface water
Switzerland
Synecology
Temperature
waterbloom formation
title Burgundy-blood phenomenon: a model of buoyancy change explains autumnal waterblooms by Planktothrix rubescens in Lake Zurich
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Burgundy-blood%20phenomenon:%20a%20model%20of%20buoyancy%20change%20explains%20autumnal%20waterblooms%20by%20Planktothrix%20rubescens%20in%20Lake%20Zurich&rft.jtitle=The%20New%20phytologist&rft.au=Walsby,%20Anthony%20E.&rft.date=2006-01&rft.volume=169&rft.issue=1&rft.spage=109&rft.epage=122&rft.pages=109-122&rft.issn=0028-646X&rft.eissn=1469-8137&rft.coden=NEPHAV&rft_id=info:doi/10.1111/j.1469-8137.2005.01567.x&rft_dat=%3Cjstor_proqu%3E3694364%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67604034&rft_id=info:pmid/16390423&rft_jstor_id=3694364&rfr_iscdi=true