Optimal feature selection for the assessment of vocal fold disorders

Abstract Unilateral vocal fold paralysis, vocal fold polyp, and vocal fold nodules are the most common types of neurogenic and organic vocal disorders. This article aims to distinguish these types of vocal diseases into four different classes for the purpose of automatic screening. Firstly, the reco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2009-10, Vol.39 (10), p.860-868
Hauptverfasser: Khadivi Heris, Hossein, Seyed Aghazadeh, Babak, Nikkhah-Bahrami, Mansour
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 868
container_issue 10
container_start_page 860
container_title Computers in biology and medicine
container_volume 39
creator Khadivi Heris, Hossein
Seyed Aghazadeh, Babak
Nikkhah-Bahrami, Mansour
description Abstract Unilateral vocal fold paralysis, vocal fold polyp, and vocal fold nodules are the most common types of neurogenic and organic vocal disorders. This article aims to distinguish these types of vocal diseases into four different classes for the purpose of automatic screening. Firstly, the reconstructed signal at each wavelet packet decomposition sub-band in five levels of decomposition with mother wavelet of (db10) is used to extract the nonlinear features of self-similarity and approximate entropy. Also, wavelet packet coefficients are used to measure energy and Shannon entropy features at different spectral sub-bands. Consequently, to find a discriminant feature vector, three different methods have been applied: Davies–Bouldin (DB) criteria, genetic algorithm (GA) with the fitness functions of support vector machine's (SVM) and k -nearest neighbor's (KNN) recognition rates. Finally, obtained feature vectors have been passed on to SVM and KNN classifiers. The results show that a feature vector of length 12 obtained by the optimization method of GA with the fitness function of SVM's recognition rate fed to SVM classifier achieves the highest classification accuracy of 91%. Furthermore, nonlinear features play an important role in pathological voice classification by participating rate of approximately 67% in the optimal feature vector.
doi_str_mv 10.1016/j.compbiomed.2009.06.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67600859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001048250900122X</els_id><sourcerecordid>67600859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-1f2eabdcc9ce551b7c1333a52e92bfdf7b0eb6c091c98cc7f6d622918174f0b93</originalsourceid><addsrcrecordid>eNqNkkGL1TAQgIMo7tvVvyAFwVvrJGnT5iLorq7Cwh5U8BbaZIJ5ts0z0y7svzflPVzYi54ykG9mmPmGsYJDxYGrt_vKxukwhDihqwSArkBVwOsnbMe7VpfQyPop2wFwKOtONGfsnGgPADVIeM7OuFaq4Vzs2NXtYQlTPxYe-2VNWBCOaJcQ58LHVCw_seiJkGjCeSmiL-6i3eg4usIFislhohfsme9Hwpen94J9__Tx2-Xn8ub2-svl-5vS1p1aSu4F9oOzVltsGj60lksp-0agFoN3vh0AB2VBc6s7a1uvnBJC8463tYdBywv25lj3kOLvFWkxUyCL49jPGFcyqlUAXfNvUEALNRd1Bl8_AvdxTXMewnCQEkSm2kx1R8qmSJTQm0PKS0v3GTKbELM3D0LMJsSAMllITn11arAO29_fxJOBDHw4ApgXdxcwGbIBZ4supCzCuBj-p8u7R0XsGOaQTf3Ce6SHmQwJA-brdhjbXYDOkRA_5B_fiLXe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033024127</pqid></control><display><type>article</type><title>Optimal feature selection for the assessment of vocal fold disorders</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Khadivi Heris, Hossein ; Seyed Aghazadeh, Babak ; Nikkhah-Bahrami, Mansour</creator><creatorcontrib>Khadivi Heris, Hossein ; Seyed Aghazadeh, Babak ; Nikkhah-Bahrami, Mansour</creatorcontrib><description>Abstract Unilateral vocal fold paralysis, vocal fold polyp, and vocal fold nodules are the most common types of neurogenic and organic vocal disorders. This article aims to distinguish these types of vocal diseases into four different classes for the purpose of automatic screening. Firstly, the reconstructed signal at each wavelet packet decomposition sub-band in five levels of decomposition with mother wavelet of (db10) is used to extract the nonlinear features of self-similarity and approximate entropy. Also, wavelet packet coefficients are used to measure energy and Shannon entropy features at different spectral sub-bands. Consequently, to find a discriminant feature vector, three different methods have been applied: Davies–Bouldin (DB) criteria, genetic algorithm (GA) with the fitness functions of support vector machine's (SVM) and k -nearest neighbor's (KNN) recognition rates. Finally, obtained feature vectors have been passed on to SVM and KNN classifiers. The results show that a feature vector of length 12 obtained by the optimization method of GA with the fitness function of SVM's recognition rate fed to SVM classifier achieves the highest classification accuracy of 91%. Furthermore, nonlinear features play an important role in pathological voice classification by participating rate of approximately 67% in the optimal feature vector.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2009.06.014</identifier><identifier>PMID: 19665112</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Civil engineering ; Classification ; Decomposition ; Feature selection ; Genetic algorithms ; Humans ; Internal Medicine ; Larynx ; Methods ; Models, Theoretical ; Neural networks ; Nonlinear analysis ; Other ; Pathology ; Speech disorders ; Studies ; Vocal Cords - physiopathology ; Voice signal analysis ; Wavelet packet ; Wavelet transforms</subject><ispartof>Computers in biology and medicine, 2009-10, Vol.39 (10), p.860-868</ispartof><rights>2009</rights><rights>Copyright Elsevier Limited Oct 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-1f2eabdcc9ce551b7c1333a52e92bfdf7b0eb6c091c98cc7f6d622918174f0b93</citedby><cites>FETCH-LOGICAL-c486t-1f2eabdcc9ce551b7c1333a52e92bfdf7b0eb6c091c98cc7f6d622918174f0b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1033024127?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19665112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khadivi Heris, Hossein</creatorcontrib><creatorcontrib>Seyed Aghazadeh, Babak</creatorcontrib><creatorcontrib>Nikkhah-Bahrami, Mansour</creatorcontrib><title>Optimal feature selection for the assessment of vocal fold disorders</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract Unilateral vocal fold paralysis, vocal fold polyp, and vocal fold nodules are the most common types of neurogenic and organic vocal disorders. This article aims to distinguish these types of vocal diseases into four different classes for the purpose of automatic screening. Firstly, the reconstructed signal at each wavelet packet decomposition sub-band in five levels of decomposition with mother wavelet of (db10) is used to extract the nonlinear features of self-similarity and approximate entropy. Also, wavelet packet coefficients are used to measure energy and Shannon entropy features at different spectral sub-bands. Consequently, to find a discriminant feature vector, three different methods have been applied: Davies–Bouldin (DB) criteria, genetic algorithm (GA) with the fitness functions of support vector machine's (SVM) and k -nearest neighbor's (KNN) recognition rates. Finally, obtained feature vectors have been passed on to SVM and KNN classifiers. The results show that a feature vector of length 12 obtained by the optimization method of GA with the fitness function of SVM's recognition rate fed to SVM classifier achieves the highest classification accuracy of 91%. Furthermore, nonlinear features play an important role in pathological voice classification by participating rate of approximately 67% in the optimal feature vector.</description><subject>Algorithms</subject><subject>Civil engineering</subject><subject>Classification</subject><subject>Decomposition</subject><subject>Feature selection</subject><subject>Genetic algorithms</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Larynx</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Nonlinear analysis</subject><subject>Other</subject><subject>Pathology</subject><subject>Speech disorders</subject><subject>Studies</subject><subject>Vocal Cords - physiopathology</subject><subject>Voice signal analysis</subject><subject>Wavelet packet</subject><subject>Wavelet transforms</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkkGL1TAQgIMo7tvVvyAFwVvrJGnT5iLorq7Cwh5U8BbaZIJ5ts0z0y7svzflPVzYi54ykG9mmPmGsYJDxYGrt_vKxukwhDihqwSArkBVwOsnbMe7VpfQyPop2wFwKOtONGfsnGgPADVIeM7OuFaq4Vzs2NXtYQlTPxYe-2VNWBCOaJcQ58LHVCw_seiJkGjCeSmiL-6i3eg4usIFislhohfsme9Hwpen94J9__Tx2-Xn8ub2-svl-5vS1p1aSu4F9oOzVltsGj60lksp-0agFoN3vh0AB2VBc6s7a1uvnBJC8463tYdBywv25lj3kOLvFWkxUyCL49jPGFcyqlUAXfNvUEALNRd1Bl8_AvdxTXMewnCQEkSm2kx1R8qmSJTQm0PKS0v3GTKbELM3D0LMJsSAMllITn11arAO29_fxJOBDHw4ApgXdxcwGbIBZ4supCzCuBj-p8u7R0XsGOaQTf3Ce6SHmQwJA-brdhjbXYDOkRA_5B_fiLXe</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Khadivi Heris, Hossein</creator><creator>Seyed Aghazadeh, Babak</creator><creator>Nikkhah-Bahrami, Mansour</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20091001</creationdate><title>Optimal feature selection for the assessment of vocal fold disorders</title><author>Khadivi Heris, Hossein ; Seyed Aghazadeh, Babak ; Nikkhah-Bahrami, Mansour</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-1f2eabdcc9ce551b7c1333a52e92bfdf7b0eb6c091c98cc7f6d622918174f0b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Civil engineering</topic><topic>Classification</topic><topic>Decomposition</topic><topic>Feature selection</topic><topic>Genetic algorithms</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Larynx</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Nonlinear analysis</topic><topic>Other</topic><topic>Pathology</topic><topic>Speech disorders</topic><topic>Studies</topic><topic>Vocal Cords - physiopathology</topic><topic>Voice signal analysis</topic><topic>Wavelet packet</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khadivi Heris, Hossein</creatorcontrib><creatorcontrib>Seyed Aghazadeh, Babak</creatorcontrib><creatorcontrib>Nikkhah-Bahrami, Mansour</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khadivi Heris, Hossein</au><au>Seyed Aghazadeh, Babak</au><au>Nikkhah-Bahrami, Mansour</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal feature selection for the assessment of vocal fold disorders</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2009-10-01</date><risdate>2009</risdate><volume>39</volume><issue>10</issue><spage>860</spage><epage>868</epage><pages>860-868</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract Unilateral vocal fold paralysis, vocal fold polyp, and vocal fold nodules are the most common types of neurogenic and organic vocal disorders. This article aims to distinguish these types of vocal diseases into four different classes for the purpose of automatic screening. Firstly, the reconstructed signal at each wavelet packet decomposition sub-band in five levels of decomposition with mother wavelet of (db10) is used to extract the nonlinear features of self-similarity and approximate entropy. Also, wavelet packet coefficients are used to measure energy and Shannon entropy features at different spectral sub-bands. Consequently, to find a discriminant feature vector, three different methods have been applied: Davies–Bouldin (DB) criteria, genetic algorithm (GA) with the fitness functions of support vector machine's (SVM) and k -nearest neighbor's (KNN) recognition rates. Finally, obtained feature vectors have been passed on to SVM and KNN classifiers. The results show that a feature vector of length 12 obtained by the optimization method of GA with the fitness function of SVM's recognition rate fed to SVM classifier achieves the highest classification accuracy of 91%. Furthermore, nonlinear features play an important role in pathological voice classification by participating rate of approximately 67% in the optimal feature vector.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>19665112</pmid><doi>10.1016/j.compbiomed.2009.06.014</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2009-10, Vol.39 (10), p.860-868
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_67600859
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Algorithms
Civil engineering
Classification
Decomposition
Feature selection
Genetic algorithms
Humans
Internal Medicine
Larynx
Methods
Models, Theoretical
Neural networks
Nonlinear analysis
Other
Pathology
Speech disorders
Studies
Vocal Cords - physiopathology
Voice signal analysis
Wavelet packet
Wavelet transforms
title Optimal feature selection for the assessment of vocal fold disorders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20feature%20selection%20for%20the%20assessment%20of%20vocal%20fold%20disorders&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Khadivi%20Heris,%20Hossein&rft.date=2009-10-01&rft.volume=39&rft.issue=10&rft.spage=860&rft.epage=868&rft.pages=860-868&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2009.06.014&rft_dat=%3Cproquest_cross%3E67600859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033024127&rft_id=info:pmid/19665112&rft_els_id=S001048250900122X&rfr_iscdi=true