Mitochondrial DNA integrity is not dependent on DNA polymerase-β activity
Mutations in mitochondrial DNA (mtDNA) are involved in a variety of pathologies, including cancer and neurodegenerative diseases, as well as in aging. mtDNA mutations result predominantly from damage by reactive oxygen species (ROS) that is not repaired prior to replication. Repair of ROS-damaged ba...
Gespeichert in:
Veröffentlicht in: | DNA repair 2006-01, Vol.5 (1), p.71-79 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 79 |
---|---|
container_issue | 1 |
container_start_page | 71 |
container_title | DNA repair |
container_volume | 5 |
creator | Hansen, Alexis B. Griner, Nicholas B. Anderson, Jon P. Kujoth, Greg C. Prolla, Tomas A. Loeb, Lawrence A. Glick, Eitan |
description | Mutations in mitochondrial DNA (mtDNA) are involved in a variety of pathologies, including cancer and neurodegenerative diseases, as well as in aging. mtDNA mutations result predominantly from damage by reactive oxygen species (ROS) that is not repaired prior to replication. Repair of ROS-damaged bases occurs mainly via base excision repair (BER) in mitochondria and nuclei. In nuclear BER, the two penultimate steps are carried out by DNA polymerase-β (Polβ), which exhibits both 5′-deoxyribose-5-phosphate (5′-dRP) lyase and DNA polymerase activities. In mitochondria, DNA polymerase-γ (Polγ) is believed to be the sole polymerase and is therefore assumed to function in mitochondrial BER. However, a recent report suggested the presence of Polβ or a “Polβ-like” enzyme in bovine mitochondria. Consequently, in the present work, we tested the hypothesis that Polβ is present and functions in mammalian mitochondria. Initially we identified two DNA polymerase activities, one corresponding to Polγ and the other to Polβ, in mitochondrial preparations obtained by differential centrifugation and discontinuous sucrose density gradient centrifugation. However, upon further fractionation in linear Percoll gradients, we were able to separate Polβ from mitochondria and to show that intact mitochondria, identified by electron microscopy, lacked Polβ activity. In a functional test for the presence of Polβ function in mitochondria, we used a new assay for detection of random (i.e., non-clonal) mutations in single mtDNA molecules. We did not detect enhanced mutation frequency in mtDNA from Polβ null cells. In contrast, mtDNA from cells harboring mutations in the Polγ exonuclease domain that abolish proofreading displayed a ≥17-fold increase in mutation frequency. We conclude that Polβ is not an essential component of the machinery that maintains mtDNA integrity. |
doi_str_mv | 10.1016/j.dnarep.2005.07.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67600420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568786405002004</els_id><sourcerecordid>67600420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-4ff1ec0b09eb612bbd4a0a6c9003329fdf972eb7e6b66639ceab50d9b277c4ea3</originalsourceid><addsrcrecordid>eNqF0M1u1DAQwHELUdEPeAOEcoFbwjhxxpsLUtVCAbXlAmfLHxPwKmsH21tpX4sH4ZlI2RW90ZPn8JuR9WfsJYeGA8e368YFnWhuWoC-AdkADE_YCe9xVctVj0__zSiO2WnOawDeS8Rn7Jgjx16AOGGfb3yJ9kcMLnk9VZe355UPhb4nX3aVz1WIpXI0U3AUShXDXzHHabehpDPVv39V2hZ_t_Dn7GjUU6YXh_eMffvw_uvFx_r6y9Wni_Pr2oqWl1qMIycLBgYyyFtjnNCg0Q4AXdcOoxsH2ZKRhAYRu8GSNj24wbRSWkG6O2Nv9nfnFH9uKRe18dnSNOlAcZsVSgQQLTwKuYQVFwIXKPbQpphzolHNyW902ikO6j62Wqt9bHUfW4FUS-xl7dXh_tZsyD0sHeou4PUB6Gz1NCYdrM8PTnYD8r5d3Lu9oyXbnaeksvUULDmfyBblov__T_4Agh2fxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17081446</pqid></control><display><type>article</type><title>Mitochondrial DNA integrity is not dependent on DNA polymerase-β activity</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hansen, Alexis B. ; Griner, Nicholas B. ; Anderson, Jon P. ; Kujoth, Greg C. ; Prolla, Tomas A. ; Loeb, Lawrence A. ; Glick, Eitan</creator><creatorcontrib>Hansen, Alexis B. ; Griner, Nicholas B. ; Anderson, Jon P. ; Kujoth, Greg C. ; Prolla, Tomas A. ; Loeb, Lawrence A. ; Glick, Eitan</creatorcontrib><description>Mutations in mitochondrial DNA (mtDNA) are involved in a variety of pathologies, including cancer and neurodegenerative diseases, as well as in aging. mtDNA mutations result predominantly from damage by reactive oxygen species (ROS) that is not repaired prior to replication. Repair of ROS-damaged bases occurs mainly via base excision repair (BER) in mitochondria and nuclei. In nuclear BER, the two penultimate steps are carried out by DNA polymerase-β (Polβ), which exhibits both 5′-deoxyribose-5-phosphate (5′-dRP) lyase and DNA polymerase activities. In mitochondria, DNA polymerase-γ (Polγ) is believed to be the sole polymerase and is therefore assumed to function in mitochondrial BER. However, a recent report suggested the presence of Polβ or a “Polβ-like” enzyme in bovine mitochondria. Consequently, in the present work, we tested the hypothesis that Polβ is present and functions in mammalian mitochondria. Initially we identified two DNA polymerase activities, one corresponding to Polγ and the other to Polβ, in mitochondrial preparations obtained by differential centrifugation and discontinuous sucrose density gradient centrifugation. However, upon further fractionation in linear Percoll gradients, we were able to separate Polβ from mitochondria and to show that intact mitochondria, identified by electron microscopy, lacked Polβ activity. In a functional test for the presence of Polβ function in mitochondria, we used a new assay for detection of random (i.e., non-clonal) mutations in single mtDNA molecules. We did not detect enhanced mutation frequency in mtDNA from Polβ null cells. In contrast, mtDNA from cells harboring mutations in the Polγ exonuclease domain that abolish proofreading displayed a ≥17-fold increase in mutation frequency. We conclude that Polβ is not an essential component of the machinery that maintains mtDNA integrity.</description><identifier>ISSN: 1568-7864</identifier><identifier>EISSN: 1568-7856</identifier><identifier>DOI: 10.1016/j.dnarep.2005.07.009</identifier><identifier>PMID: 16165404</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animals ; Bacteriology ; Base excision repair ; Biological and medical sciences ; Centrifugation, Density Gradient - methods ; DNA Polymerase beta - genetics ; DNA Polymerase beta - isolation & purification ; DNA Polymerase beta - metabolism ; DNA Repair - physiology ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; Fundamental and applied biological sciences. Psychology ; Growth, nutrition, cell differenciation ; Humans ; Mice ; Microbiology ; Mitochondria ; Mitochondria, Liver - enzymology ; Mitochondrial DNA ; Molecular and cellular biology ; Molecular genetics ; Mutagenesis. Repair ; Mutation ; Polβ ; Polγ ; Single molecule DNA sequencing</subject><ispartof>DNA repair, 2006-01, Vol.5 (1), p.71-79</ispartof><rights>2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-4ff1ec0b09eb612bbd4a0a6c9003329fdf972eb7e6b66639ceab50d9b277c4ea3</citedby><cites>FETCH-LOGICAL-c421t-4ff1ec0b09eb612bbd4a0a6c9003329fdf972eb7e6b66639ceab50d9b277c4ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1568786405002004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17396152$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16165404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hansen, Alexis B.</creatorcontrib><creatorcontrib>Griner, Nicholas B.</creatorcontrib><creatorcontrib>Anderson, Jon P.</creatorcontrib><creatorcontrib>Kujoth, Greg C.</creatorcontrib><creatorcontrib>Prolla, Tomas A.</creatorcontrib><creatorcontrib>Loeb, Lawrence A.</creatorcontrib><creatorcontrib>Glick, Eitan</creatorcontrib><title>Mitochondrial DNA integrity is not dependent on DNA polymerase-β activity</title><title>DNA repair</title><addtitle>DNA Repair (Amst)</addtitle><description>Mutations in mitochondrial DNA (mtDNA) are involved in a variety of pathologies, including cancer and neurodegenerative diseases, as well as in aging. mtDNA mutations result predominantly from damage by reactive oxygen species (ROS) that is not repaired prior to replication. Repair of ROS-damaged bases occurs mainly via base excision repair (BER) in mitochondria and nuclei. In nuclear BER, the two penultimate steps are carried out by DNA polymerase-β (Polβ), which exhibits both 5′-deoxyribose-5-phosphate (5′-dRP) lyase and DNA polymerase activities. In mitochondria, DNA polymerase-γ (Polγ) is believed to be the sole polymerase and is therefore assumed to function in mitochondrial BER. However, a recent report suggested the presence of Polβ or a “Polβ-like” enzyme in bovine mitochondria. Consequently, in the present work, we tested the hypothesis that Polβ is present and functions in mammalian mitochondria. Initially we identified two DNA polymerase activities, one corresponding to Polγ and the other to Polβ, in mitochondrial preparations obtained by differential centrifugation and discontinuous sucrose density gradient centrifugation. However, upon further fractionation in linear Percoll gradients, we were able to separate Polβ from mitochondria and to show that intact mitochondria, identified by electron microscopy, lacked Polβ activity. In a functional test for the presence of Polβ function in mitochondria, we used a new assay for detection of random (i.e., non-clonal) mutations in single mtDNA molecules. We did not detect enhanced mutation frequency in mtDNA from Polβ null cells. In contrast, mtDNA from cells harboring mutations in the Polγ exonuclease domain that abolish proofreading displayed a ≥17-fold increase in mutation frequency. We conclude that Polβ is not an essential component of the machinery that maintains mtDNA integrity.</description><subject>Animals</subject><subject>Bacteriology</subject><subject>Base excision repair</subject><subject>Biological and medical sciences</subject><subject>Centrifugation, Density Gradient - methods</subject><subject>DNA Polymerase beta - genetics</subject><subject>DNA Polymerase beta - isolation & purification</subject><subject>DNA Polymerase beta - metabolism</subject><subject>DNA Repair - physiology</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Growth, nutrition, cell differenciation</subject><subject>Humans</subject><subject>Mice</subject><subject>Microbiology</subject><subject>Mitochondria</subject><subject>Mitochondria, Liver - enzymology</subject><subject>Mitochondrial DNA</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutagenesis. Repair</subject><subject>Mutation</subject><subject>Polβ</subject><subject>Polγ</subject><subject>Single molecule DNA sequencing</subject><issn>1568-7864</issn><issn>1568-7856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0M1u1DAQwHELUdEPeAOEcoFbwjhxxpsLUtVCAbXlAmfLHxPwKmsH21tpX4sH4ZlI2RW90ZPn8JuR9WfsJYeGA8e368YFnWhuWoC-AdkADE_YCe9xVctVj0__zSiO2WnOawDeS8Rn7Jgjx16AOGGfb3yJ9kcMLnk9VZe355UPhb4nX3aVz1WIpXI0U3AUShXDXzHHabehpDPVv39V2hZ_t_Dn7GjUU6YXh_eMffvw_uvFx_r6y9Wni_Pr2oqWl1qMIycLBgYyyFtjnNCg0Q4AXdcOoxsH2ZKRhAYRu8GSNj24wbRSWkG6O2Nv9nfnFH9uKRe18dnSNOlAcZsVSgQQLTwKuYQVFwIXKPbQpphzolHNyW902ikO6j62Wqt9bHUfW4FUS-xl7dXh_tZsyD0sHeou4PUB6Gz1NCYdrM8PTnYD8r5d3Lu9oyXbnaeksvUULDmfyBblov__T_4Agh2fxg</recordid><startdate>20060105</startdate><enddate>20060105</enddate><creator>Hansen, Alexis B.</creator><creator>Griner, Nicholas B.</creator><creator>Anderson, Jon P.</creator><creator>Kujoth, Greg C.</creator><creator>Prolla, Tomas A.</creator><creator>Loeb, Lawrence A.</creator><creator>Glick, Eitan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20060105</creationdate><title>Mitochondrial DNA integrity is not dependent on DNA polymerase-β activity</title><author>Hansen, Alexis B. ; Griner, Nicholas B. ; Anderson, Jon P. ; Kujoth, Greg C. ; Prolla, Tomas A. ; Loeb, Lawrence A. ; Glick, Eitan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-4ff1ec0b09eb612bbd4a0a6c9003329fdf972eb7e6b66639ceab50d9b277c4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Bacteriology</topic><topic>Base excision repair</topic><topic>Biological and medical sciences</topic><topic>Centrifugation, Density Gradient - methods</topic><topic>DNA Polymerase beta - genetics</topic><topic>DNA Polymerase beta - isolation & purification</topic><topic>DNA Polymerase beta - metabolism</topic><topic>DNA Repair - physiology</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Growth, nutrition, cell differenciation</topic><topic>Humans</topic><topic>Mice</topic><topic>Microbiology</topic><topic>Mitochondria</topic><topic>Mitochondria, Liver - enzymology</topic><topic>Mitochondrial DNA</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutagenesis. Repair</topic><topic>Mutation</topic><topic>Polβ</topic><topic>Polγ</topic><topic>Single molecule DNA sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Alexis B.</creatorcontrib><creatorcontrib>Griner, Nicholas B.</creatorcontrib><creatorcontrib>Anderson, Jon P.</creatorcontrib><creatorcontrib>Kujoth, Greg C.</creatorcontrib><creatorcontrib>Prolla, Tomas A.</creatorcontrib><creatorcontrib>Loeb, Lawrence A.</creatorcontrib><creatorcontrib>Glick, Eitan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>DNA repair</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Alexis B.</au><au>Griner, Nicholas B.</au><au>Anderson, Jon P.</au><au>Kujoth, Greg C.</au><au>Prolla, Tomas A.</au><au>Loeb, Lawrence A.</au><au>Glick, Eitan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial DNA integrity is not dependent on DNA polymerase-β activity</atitle><jtitle>DNA repair</jtitle><addtitle>DNA Repair (Amst)</addtitle><date>2006-01-05</date><risdate>2006</risdate><volume>5</volume><issue>1</issue><spage>71</spage><epage>79</epage><pages>71-79</pages><issn>1568-7864</issn><eissn>1568-7856</eissn><abstract>Mutations in mitochondrial DNA (mtDNA) are involved in a variety of pathologies, including cancer and neurodegenerative diseases, as well as in aging. mtDNA mutations result predominantly from damage by reactive oxygen species (ROS) that is not repaired prior to replication. Repair of ROS-damaged bases occurs mainly via base excision repair (BER) in mitochondria and nuclei. In nuclear BER, the two penultimate steps are carried out by DNA polymerase-β (Polβ), which exhibits both 5′-deoxyribose-5-phosphate (5′-dRP) lyase and DNA polymerase activities. In mitochondria, DNA polymerase-γ (Polγ) is believed to be the sole polymerase and is therefore assumed to function in mitochondrial BER. However, a recent report suggested the presence of Polβ or a “Polβ-like” enzyme in bovine mitochondria. Consequently, in the present work, we tested the hypothesis that Polβ is present and functions in mammalian mitochondria. Initially we identified two DNA polymerase activities, one corresponding to Polγ and the other to Polβ, in mitochondrial preparations obtained by differential centrifugation and discontinuous sucrose density gradient centrifugation. However, upon further fractionation in linear Percoll gradients, we were able to separate Polβ from mitochondria and to show that intact mitochondria, identified by electron microscopy, lacked Polβ activity. In a functional test for the presence of Polβ function in mitochondria, we used a new assay for detection of random (i.e., non-clonal) mutations in single mtDNA molecules. We did not detect enhanced mutation frequency in mtDNA from Polβ null cells. In contrast, mtDNA from cells harboring mutations in the Polγ exonuclease domain that abolish proofreading displayed a ≥17-fold increase in mutation frequency. We conclude that Polβ is not an essential component of the machinery that maintains mtDNA integrity.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>16165404</pmid><doi>10.1016/j.dnarep.2005.07.009</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1568-7864 |
ispartof | DNA repair, 2006-01, Vol.5 (1), p.71-79 |
issn | 1568-7864 1568-7856 |
language | eng |
recordid | cdi_proquest_miscellaneous_67600420 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Bacteriology Base excision repair Biological and medical sciences Centrifugation, Density Gradient - methods DNA Polymerase beta - genetics DNA Polymerase beta - isolation & purification DNA Polymerase beta - metabolism DNA Repair - physiology DNA, Mitochondrial - genetics DNA, Mitochondrial - metabolism Fundamental and applied biological sciences. Psychology Growth, nutrition, cell differenciation Humans Mice Microbiology Mitochondria Mitochondria, Liver - enzymology Mitochondrial DNA Molecular and cellular biology Molecular genetics Mutagenesis. Repair Mutation Polβ Polγ Single molecule DNA sequencing |
title | Mitochondrial DNA integrity is not dependent on DNA polymerase-β activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20DNA%20integrity%20is%20not%20dependent%20on%20DNA%20polymerase-%CE%B2%20activity&rft.jtitle=DNA%20repair&rft.au=Hansen,%20Alexis%20B.&rft.date=2006-01-05&rft.volume=5&rft.issue=1&rft.spage=71&rft.epage=79&rft.pages=71-79&rft.issn=1568-7864&rft.eissn=1568-7856&rft_id=info:doi/10.1016/j.dnarep.2005.07.009&rft_dat=%3Cproquest_cross%3E67600420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17081446&rft_id=info:pmid/16165404&rft_els_id=S1568786405002004&rfr_iscdi=true |