Maturation of high-density lipoproteins

Human high-density lipoproteins (HDLs) are involved in the transport of cholesterol. The mechanism by which HDL assembles and functions is not well understood owing to a lack of structural information on circulating spherical HDL. Here, we report a series of molecular dynamics simulations that descr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2009-10, Vol.6 (39), p.863-871
Hauptverfasser: Shih, Amy Y., Sligar, Stephen G., Schulten, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 871
container_issue 39
container_start_page 863
container_title Journal of the Royal Society interface
container_volume 6
creator Shih, Amy Y.
Sligar, Stephen G.
Schulten, Klaus
description Human high-density lipoproteins (HDLs) are involved in the transport of cholesterol. The mechanism by which HDL assembles and functions is not well understood owing to a lack of structural information on circulating spherical HDL. Here, we report a series of molecular dynamics simulations that describe the maturation of discoidal HDL into spherical HDL upon incorporation of cholesterol ester as well as the resulting atomic level structure of a mature circulating spherical HDL particle. Sixty cholesterol ester molecules were added in a stepwise fashion to a discoidal HDL particle containing two apolipoproteins wrapped around a 160 dipalmitoylphosphatidylcholine lipid bilayer. The resulting matured particle, captured in a coarse-grained description, was then described in a consistent all-atom representation and analysed in chemical detail. The simulations show that maturation results from the formation of a highly dynamic hydrophobic core comprised of cholesterol ester surrounded by phospholipid and protein; the two apolipoprotein strands remain in a belt-like conformation as seen in the discoidal HDL particle, but with flexible N- and C-terminal helices and a central region stabilized by salt bridges. In the otherwise flexible lipoproteins, a less mobile central region provides an ideal location to bind lecithin cholesterol acyltransferase, the key enzyme that converts cholesterol to cholesterol ester during HDL maturation.
doi_str_mv 10.1098/rsif.2009.0173
format Article
fullrecord <record><control><sourceid>proquest_highw</sourceid><recordid>TN_cdi_proquest_miscellaneous_67598441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67598441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c657t-f4d0d0980085c9c81119286fd0d489a3e065a1acf2784a745b0264579abc33373</originalsourceid><addsrcrecordid>eNp9Uk1vEzEUXCEQLYUrR5QTnDbY628hIaGIQmkAiY9ytBzH27hs1ovtLSy_nrdsFIgQPfn5eWbeaJ6L4iFGc4yUfBqTr-cVQmqOsCC3imMsaFUyzqvb-1qqo-JeSlcIEUEYu1scYcUEEkodF0_emtxHk31oZ6Gebfzlply7Nvk8zBrfhS6G7Hyb7hd3atMk92B3nhSfT19-Wrwul-9fnS1eLEvLmchlTddoDb4QkswqKzHGqpK8hi6VyhCHODPY2LoSkhpB2QpVnDKhzMoSAvZOiueTbtevtm5tXZujaXQX_dbEQQfj9eFL6zf6MlzrSiKGUQUCj3cCMXzrXcp665N1TWNaF_qkuWBKUooBOJ-ANoaUoqv3QzDSY7Z6zFaP2eoxWyA8-tvaH_guTACQCRDDABkF610e9FXoYwvX_8vam1gfPp6dXnNPAC0JRpAVlD99N8lw7VPqnYbeoey_U8ppik_Z_dh7N_ErJEIE0xeS6vMvdHm-uHij3wH-2YQff8R3H50-sPdb3YY2wxbABIyXnOi6b2BV6xrY1Y3sMHigxtpYt2eTXxQm4Bo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67598441</pqid></control><display><type>article</type><title>Maturation of high-density lipoproteins</title><source>MEDLINE</source><source>PubMed Central</source><creator>Shih, Amy Y. ; Sligar, Stephen G. ; Schulten, Klaus</creator><creatorcontrib>Shih, Amy Y. ; Sligar, Stephen G. ; Schulten, Klaus</creatorcontrib><description>Human high-density lipoproteins (HDLs) are involved in the transport of cholesterol. The mechanism by which HDL assembles and functions is not well understood owing to a lack of structural information on circulating spherical HDL. Here, we report a series of molecular dynamics simulations that describe the maturation of discoidal HDL into spherical HDL upon incorporation of cholesterol ester as well as the resulting atomic level structure of a mature circulating spherical HDL particle. Sixty cholesterol ester molecules were added in a stepwise fashion to a discoidal HDL particle containing two apolipoproteins wrapped around a 160 dipalmitoylphosphatidylcholine lipid bilayer. The resulting matured particle, captured in a coarse-grained description, was then described in a consistent all-atom representation and analysed in chemical detail. The simulations show that maturation results from the formation of a highly dynamic hydrophobic core comprised of cholesterol ester surrounded by phospholipid and protein; the two apolipoprotein strands remain in a belt-like conformation as seen in the discoidal HDL particle, but with flexible N- and C-terminal helices and a central region stabilized by salt bridges. In the otherwise flexible lipoproteins, a less mobile central region provides an ideal location to bind lecithin cholesterol acyltransferase, the key enzyme that converts cholesterol to cholesterol ester during HDL maturation.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2009.0173</identifier><identifier>PMID: 19570799</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>All-Atom Molecular Dynamics ; Apolipoprotein A-I ; Binding Sites ; Cholesterol - chemistry ; Coarse-Grained Modelling ; Computer Simulation ; Dimerization ; Dimyristoylphosphatidylcholine - chemistry ; High-Density Lipoprotein ; Lipid Bilayers - chemistry ; Lipoproteins, HDL - chemistry ; Lipoproteins, HDL - ultrastructure ; Models, Chemical ; Models, Molecular ; Protein Binding ; Protein Conformation ; Reverse Coarse Graining</subject><ispartof>Journal of the Royal Society interface, 2009-10, Vol.6 (39), p.863-871</ispartof><rights>2009 The Royal Society</rights><rights>2009 The Royal Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c657t-f4d0d0980085c9c81119286fd0d489a3e065a1acf2784a745b0264579abc33373</citedby><cites>FETCH-LOGICAL-c657t-f4d0d0980085c9c81119286fd0d489a3e065a1acf2784a745b0264579abc33373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805102/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805102/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19570799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shih, Amy Y.</creatorcontrib><creatorcontrib>Sligar, Stephen G.</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><title>Maturation of high-density lipoproteins</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J. R. Soc. Interface</addtitle><description>Human high-density lipoproteins (HDLs) are involved in the transport of cholesterol. The mechanism by which HDL assembles and functions is not well understood owing to a lack of structural information on circulating spherical HDL. Here, we report a series of molecular dynamics simulations that describe the maturation of discoidal HDL into spherical HDL upon incorporation of cholesterol ester as well as the resulting atomic level structure of a mature circulating spherical HDL particle. Sixty cholesterol ester molecules were added in a stepwise fashion to a discoidal HDL particle containing two apolipoproteins wrapped around a 160 dipalmitoylphosphatidylcholine lipid bilayer. The resulting matured particle, captured in a coarse-grained description, was then described in a consistent all-atom representation and analysed in chemical detail. The simulations show that maturation results from the formation of a highly dynamic hydrophobic core comprised of cholesterol ester surrounded by phospholipid and protein; the two apolipoprotein strands remain in a belt-like conformation as seen in the discoidal HDL particle, but with flexible N- and C-terminal helices and a central region stabilized by salt bridges. In the otherwise flexible lipoproteins, a less mobile central region provides an ideal location to bind lecithin cholesterol acyltransferase, the key enzyme that converts cholesterol to cholesterol ester during HDL maturation.</description><subject>All-Atom Molecular Dynamics</subject><subject>Apolipoprotein A-I</subject><subject>Binding Sites</subject><subject>Cholesterol - chemistry</subject><subject>Coarse-Grained Modelling</subject><subject>Computer Simulation</subject><subject>Dimerization</subject><subject>Dimyristoylphosphatidylcholine - chemistry</subject><subject>High-Density Lipoprotein</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipoproteins, HDL - chemistry</subject><subject>Lipoproteins, HDL - ultrastructure</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Reverse Coarse Graining</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uk1vEzEUXCEQLYUrR5QTnDbY628hIaGIQmkAiY9ytBzH27hs1ovtLSy_nrdsFIgQPfn5eWbeaJ6L4iFGc4yUfBqTr-cVQmqOsCC3imMsaFUyzqvb-1qqo-JeSlcIEUEYu1scYcUEEkodF0_emtxHk31oZ6Gebfzlply7Nvk8zBrfhS6G7Hyb7hd3atMk92B3nhSfT19-Wrwul-9fnS1eLEvLmchlTddoDb4QkswqKzHGqpK8hi6VyhCHODPY2LoSkhpB2QpVnDKhzMoSAvZOiueTbtevtm5tXZujaXQX_dbEQQfj9eFL6zf6MlzrSiKGUQUCj3cCMXzrXcp665N1TWNaF_qkuWBKUooBOJ-ANoaUoqv3QzDSY7Z6zFaP2eoxWyA8-tvaH_guTACQCRDDABkF610e9FXoYwvX_8vam1gfPp6dXnNPAC0JRpAVlD99N8lw7VPqnYbeoey_U8ppik_Z_dh7N_ErJEIE0xeS6vMvdHm-uHij3wH-2YQff8R3H50-sPdb3YY2wxbABIyXnOi6b2BV6xrY1Y3sMHigxtpYt2eTXxQm4Bo</recordid><startdate>20091006</startdate><enddate>20091006</enddate><creator>Shih, Amy Y.</creator><creator>Sligar, Stephen G.</creator><creator>Schulten, Klaus</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091006</creationdate><title>Maturation of high-density lipoproteins</title><author>Shih, Amy Y. ; Sligar, Stephen G. ; Schulten, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c657t-f4d0d0980085c9c81119286fd0d489a3e065a1acf2784a745b0264579abc33373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>All-Atom Molecular Dynamics</topic><topic>Apolipoprotein A-I</topic><topic>Binding Sites</topic><topic>Cholesterol - chemistry</topic><topic>Coarse-Grained Modelling</topic><topic>Computer Simulation</topic><topic>Dimerization</topic><topic>Dimyristoylphosphatidylcholine - chemistry</topic><topic>High-Density Lipoprotein</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipoproteins, HDL - chemistry</topic><topic>Lipoproteins, HDL - ultrastructure</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Reverse Coarse Graining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shih, Amy Y.</creatorcontrib><creatorcontrib>Sligar, Stephen G.</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shih, Amy Y.</au><au>Sligar, Stephen G.</au><au>Schulten, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maturation of high-density lipoproteins</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J. R. Soc. Interface</addtitle><date>2009-10-06</date><risdate>2009</risdate><volume>6</volume><issue>39</issue><spage>863</spage><epage>871</epage><pages>863-871</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Human high-density lipoproteins (HDLs) are involved in the transport of cholesterol. The mechanism by which HDL assembles and functions is not well understood owing to a lack of structural information on circulating spherical HDL. Here, we report a series of molecular dynamics simulations that describe the maturation of discoidal HDL into spherical HDL upon incorporation of cholesterol ester as well as the resulting atomic level structure of a mature circulating spherical HDL particle. Sixty cholesterol ester molecules were added in a stepwise fashion to a discoidal HDL particle containing two apolipoproteins wrapped around a 160 dipalmitoylphosphatidylcholine lipid bilayer. The resulting matured particle, captured in a coarse-grained description, was then described in a consistent all-atom representation and analysed in chemical detail. The simulations show that maturation results from the formation of a highly dynamic hydrophobic core comprised of cholesterol ester surrounded by phospholipid and protein; the two apolipoprotein strands remain in a belt-like conformation as seen in the discoidal HDL particle, but with flexible N- and C-terminal helices and a central region stabilized by salt bridges. In the otherwise flexible lipoproteins, a less mobile central region provides an ideal location to bind lecithin cholesterol acyltransferase, the key enzyme that converts cholesterol to cholesterol ester during HDL maturation.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>19570799</pmid><doi>10.1098/rsif.2009.0173</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2009-10, Vol.6 (39), p.863-871
issn 1742-5689
1742-5662
language eng
recordid cdi_proquest_miscellaneous_67598441
source MEDLINE; PubMed Central
subjects All-Atom Molecular Dynamics
Apolipoprotein A-I
Binding Sites
Cholesterol - chemistry
Coarse-Grained Modelling
Computer Simulation
Dimerization
Dimyristoylphosphatidylcholine - chemistry
High-Density Lipoprotein
Lipid Bilayers - chemistry
Lipoproteins, HDL - chemistry
Lipoproteins, HDL - ultrastructure
Models, Chemical
Models, Molecular
Protein Binding
Protein Conformation
Reverse Coarse Graining
title Maturation of high-density lipoproteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A53%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maturation%20of%20high-density%20lipoproteins&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Shih,%20Amy%20Y.&rft.date=2009-10-06&rft.volume=6&rft.issue=39&rft.spage=863&rft.epage=871&rft.pages=863-871&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2009.0173&rft_dat=%3Cproquest_highw%3E67598441%3C/proquest_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67598441&rft_id=info:pmid/19570799&rfr_iscdi=true