A simple geometrical description of the TrueFISP ideal transient and steady-state signal
An intuitive approach is presented for assessment of the TrueFISP signal behavior in the transient phase and the steady state, based on geometrical considerations in combination with the Bloch equations. Short formulations are derived for the zenith and phase angle determining the direction of the m...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2006-01, Vol.55 (1), p.177-186 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | 1 |
container_start_page | 177 |
container_title | Magnetic resonance in medicine |
container_volume | 55 |
creator | Schmitt, P. Griswold, M. A. Gulani, V. Haase, A. Flentje, M. Jakob, P. M. |
description | An intuitive approach is presented for assessment of the TrueFISP signal behavior in the transient phase and the steady state, based on geometrical considerations in combination with the Bloch equations. Short formulations are derived for the zenith and phase angle determining the direction of the magnetization vector for which a smooth monoexponential decay is obtained even at considerable off‐resonance frequencies, thus compactly defining the target of various preparation schemes proposed in literature. A pictorial explanation is provided to illustrate how the interplay between RF excitation and relaxation governs the TrueFISP transient phase and steady state. Closed form expressions are developed that describe the signal evolution, accounting for the influence of T1, T2, flip angle, and resonance frequency offset in agreement with recently published studies. These results are obtained directly from basic assumptions, without the need for mathematical treatment or further approximations. The validity of the conceptual framework and the analytical description is verified by simulations based on the Bloch equations as well as with MR phantom experiments. The theory may be used for contrast calculations and has the potential to facilitate improved parameter quantification with magnetization prepared TrueFISP experiments accounting for off‐resonance effects. Magn Reson Med, 2006. © 2005 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/mrm.20738 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67595868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67595868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4278-e6c7df892e5e60ca0768b3b8c57646a40a9b5e2cbe7547ff925a4394f1229cde3</originalsourceid><addsrcrecordid>eNqFkEtPFEEURitEAwO64A-QWpmwaKj3YwlEkAhodAzsKtXVt6GgH2NVTXT-va0z4Mq4upvzneQehPYpOaKEsOM-9UeMaG620IxKxiomrXiFZkQLUnFqxQ7azfmREGKtFttohyrOOJVyhu5OcI79ogN8D2MPJcXgO9xADikuShwHPLa4PACepyWcX379jGMDE1GSH3KEoWA_NDgX8M2qysUXmHz3g-_eoNet7zK83dw99O38_fzsQ3X16eLy7OSqCoJpU4EKummNZSBBkeCJVqbmtQlSK6G8IN7WElioQUuh29Yy6QW3oqWM2dAA30Pv1t5FGr8vIRfXxxyg6_wA4zI7paWVRpn_gowYaanhE3i4BkMac07QukWKvU8rR4n73dtNvd2f3hN7sJEu6x6av-Qm8AQcr4EfsYPVv03u-sv1s7JaL-JU9efLwqen6Reupbu9uXAfb9Tp3VyfOsF_AesymRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20859183</pqid></control><display><type>article</type><title>A simple geometrical description of the TrueFISP ideal transient and steady-state signal</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Schmitt, P. ; Griswold, M. A. ; Gulani, V. ; Haase, A. ; Flentje, M. ; Jakob, P. M.</creator><creatorcontrib>Schmitt, P. ; Griswold, M. A. ; Gulani, V. ; Haase, A. ; Flentje, M. ; Jakob, P. M.</creatorcontrib><description>An intuitive approach is presented for assessment of the TrueFISP signal behavior in the transient phase and the steady state, based on geometrical considerations in combination with the Bloch equations. Short formulations are derived for the zenith and phase angle determining the direction of the magnetization vector for which a smooth monoexponential decay is obtained even at considerable off‐resonance frequencies, thus compactly defining the target of various preparation schemes proposed in literature. A pictorial explanation is provided to illustrate how the interplay between RF excitation and relaxation governs the TrueFISP transient phase and steady state. Closed form expressions are developed that describe the signal evolution, accounting for the influence of T1, T2, flip angle, and resonance frequency offset in agreement with recently published studies. These results are obtained directly from basic assumptions, without the need for mathematical treatment or further approximations. The validity of the conceptual framework and the analytical description is verified by simulations based on the Bloch equations as well as with MR phantom experiments. The theory may be used for contrast calculations and has the potential to facilitate improved parameter quantification with magnetization prepared TrueFISP experiments accounting for off‐resonance effects. Magn Reson Med, 2006. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.20738</identifier><identifier>PMID: 16323155</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>balanced SSFP ; decay rate ; Image Processing, Computer-Assisted ; Magnetic Resonance Imaging - methods ; off-resonance ; Phantoms, Imaging ; Signal Processing, Computer-Assisted ; steady state ; transient phase ; TrueFISP</subject><ispartof>Magnetic resonance in medicine, 2006-01, Vol.55 (1), p.177-186</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4278-e6c7df892e5e60ca0768b3b8c57646a40a9b5e2cbe7547ff925a4394f1229cde3</citedby><cites>FETCH-LOGICAL-c4278-e6c7df892e5e60ca0768b3b8c57646a40a9b5e2cbe7547ff925a4394f1229cde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.20738$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.20738$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16323155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmitt, P.</creatorcontrib><creatorcontrib>Griswold, M. A.</creatorcontrib><creatorcontrib>Gulani, V.</creatorcontrib><creatorcontrib>Haase, A.</creatorcontrib><creatorcontrib>Flentje, M.</creatorcontrib><creatorcontrib>Jakob, P. M.</creatorcontrib><title>A simple geometrical description of the TrueFISP ideal transient and steady-state signal</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>An intuitive approach is presented for assessment of the TrueFISP signal behavior in the transient phase and the steady state, based on geometrical considerations in combination with the Bloch equations. Short formulations are derived for the zenith and phase angle determining the direction of the magnetization vector for which a smooth monoexponential decay is obtained even at considerable off‐resonance frequencies, thus compactly defining the target of various preparation schemes proposed in literature. A pictorial explanation is provided to illustrate how the interplay between RF excitation and relaxation governs the TrueFISP transient phase and steady state. Closed form expressions are developed that describe the signal evolution, accounting for the influence of T1, T2, flip angle, and resonance frequency offset in agreement with recently published studies. These results are obtained directly from basic assumptions, without the need for mathematical treatment or further approximations. The validity of the conceptual framework and the analytical description is verified by simulations based on the Bloch equations as well as with MR phantom experiments. The theory may be used for contrast calculations and has the potential to facilitate improved parameter quantification with magnetization prepared TrueFISP experiments accounting for off‐resonance effects. Magn Reson Med, 2006. © 2005 Wiley‐Liss, Inc.</description><subject>balanced SSFP</subject><subject>decay rate</subject><subject>Image Processing, Computer-Assisted</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>off-resonance</subject><subject>Phantoms, Imaging</subject><subject>Signal Processing, Computer-Assisted</subject><subject>steady state</subject><subject>transient phase</subject><subject>TrueFISP</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtPFEEURitEAwO64A-QWpmwaKj3YwlEkAhodAzsKtXVt6GgH2NVTXT-va0z4Mq4upvzneQehPYpOaKEsOM-9UeMaG620IxKxiomrXiFZkQLUnFqxQ7azfmREGKtFttohyrOOJVyhu5OcI79ogN8D2MPJcXgO9xADikuShwHPLa4PACepyWcX379jGMDE1GSH3KEoWA_NDgX8M2qysUXmHz3g-_eoNet7zK83dw99O38_fzsQ3X16eLy7OSqCoJpU4EKummNZSBBkeCJVqbmtQlSK6G8IN7WElioQUuh29Yy6QW3oqWM2dAA30Pv1t5FGr8vIRfXxxyg6_wA4zI7paWVRpn_gowYaanhE3i4BkMac07QukWKvU8rR4n73dtNvd2f3hN7sJEu6x6av-Qm8AQcr4EfsYPVv03u-sv1s7JaL-JU9efLwqen6Reupbu9uXAfb9Tp3VyfOsF_AesymRE</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Schmitt, P.</creator><creator>Griswold, M. A.</creator><creator>Gulani, V.</creator><creator>Haase, A.</creator><creator>Flentje, M.</creator><creator>Jakob, P. M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200601</creationdate><title>A simple geometrical description of the TrueFISP ideal transient and steady-state signal</title><author>Schmitt, P. ; Griswold, M. A. ; Gulani, V. ; Haase, A. ; Flentje, M. ; Jakob, P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4278-e6c7df892e5e60ca0768b3b8c57646a40a9b5e2cbe7547ff925a4394f1229cde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>balanced SSFP</topic><topic>decay rate</topic><topic>Image Processing, Computer-Assisted</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>off-resonance</topic><topic>Phantoms, Imaging</topic><topic>Signal Processing, Computer-Assisted</topic><topic>steady state</topic><topic>transient phase</topic><topic>TrueFISP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitt, P.</creatorcontrib><creatorcontrib>Griswold, M. A.</creatorcontrib><creatorcontrib>Gulani, V.</creatorcontrib><creatorcontrib>Haase, A.</creatorcontrib><creatorcontrib>Flentje, M.</creatorcontrib><creatorcontrib>Jakob, P. M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitt, P.</au><au>Griswold, M. A.</au><au>Gulani, V.</au><au>Haase, A.</au><au>Flentje, M.</au><au>Jakob, P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple geometrical description of the TrueFISP ideal transient and steady-state signal</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2006-01</date><risdate>2006</risdate><volume>55</volume><issue>1</issue><spage>177</spage><epage>186</epage><pages>177-186</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>An intuitive approach is presented for assessment of the TrueFISP signal behavior in the transient phase and the steady state, based on geometrical considerations in combination with the Bloch equations. Short formulations are derived for the zenith and phase angle determining the direction of the magnetization vector for which a smooth monoexponential decay is obtained even at considerable off‐resonance frequencies, thus compactly defining the target of various preparation schemes proposed in literature. A pictorial explanation is provided to illustrate how the interplay between RF excitation and relaxation governs the TrueFISP transient phase and steady state. Closed form expressions are developed that describe the signal evolution, accounting for the influence of T1, T2, flip angle, and resonance frequency offset in agreement with recently published studies. These results are obtained directly from basic assumptions, without the need for mathematical treatment or further approximations. The validity of the conceptual framework and the analytical description is verified by simulations based on the Bloch equations as well as with MR phantom experiments. The theory may be used for contrast calculations and has the potential to facilitate improved parameter quantification with magnetization prepared TrueFISP experiments accounting for off‐resonance effects. Magn Reson Med, 2006. © 2005 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16323155</pmid><doi>10.1002/mrm.20738</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2006-01, Vol.55 (1), p.177-186 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_67595868 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content |
subjects | balanced SSFP decay rate Image Processing, Computer-Assisted Magnetic Resonance Imaging - methods off-resonance Phantoms, Imaging Signal Processing, Computer-Assisted steady state transient phase TrueFISP |
title | A simple geometrical description of the TrueFISP ideal transient and steady-state signal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20geometrical%20description%20of%20the%20TrueFISP%20ideal%20transient%20and%20steady-state%20signal&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Schmitt,%20P.&rft.date=2006-01&rft.volume=55&rft.issue=1&rft.spage=177&rft.epage=186&rft.pages=177-186&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.20738&rft_dat=%3Cproquest_cross%3E67595868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20859183&rft_id=info:pmid/16323155&rfr_iscdi=true |