A simple geometrical description of the TrueFISP ideal transient and steady-state signal

An intuitive approach is presented for assessment of the TrueFISP signal behavior in the transient phase and the steady state, based on geometrical considerations in combination with the Bloch equations. Short formulations are derived for the zenith and phase angle determining the direction of the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2006-01, Vol.55 (1), p.177-186
Hauptverfasser: Schmitt, P., Griswold, M. A., Gulani, V., Haase, A., Flentje, M., Jakob, P. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue 1
container_start_page 177
container_title Magnetic resonance in medicine
container_volume 55
creator Schmitt, P.
Griswold, M. A.
Gulani, V.
Haase, A.
Flentje, M.
Jakob, P. M.
description An intuitive approach is presented for assessment of the TrueFISP signal behavior in the transient phase and the steady state, based on geometrical considerations in combination with the Bloch equations. Short formulations are derived for the zenith and phase angle determining the direction of the magnetization vector for which a smooth monoexponential decay is obtained even at considerable off‐resonance frequencies, thus compactly defining the target of various preparation schemes proposed in literature. A pictorial explanation is provided to illustrate how the interplay between RF excitation and relaxation governs the TrueFISP transient phase and steady state. Closed form expressions are developed that describe the signal evolution, accounting for the influence of T1, T2, flip angle, and resonance frequency offset in agreement with recently published studies. These results are obtained directly from basic assumptions, without the need for mathematical treatment or further approximations. The validity of the conceptual framework and the analytical description is verified by simulations based on the Bloch equations as well as with MR phantom experiments. The theory may be used for contrast calculations and has the potential to facilitate improved parameter quantification with magnetization prepared TrueFISP experiments accounting for off‐resonance effects. Magn Reson Med, 2006. © 2005 Wiley‐Liss, Inc.
doi_str_mv 10.1002/mrm.20738
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67595868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67595868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4278-e6c7df892e5e60ca0768b3b8c57646a40a9b5e2cbe7547ff925a4394f1229cde3</originalsourceid><addsrcrecordid>eNqFkEtPFEEURitEAwO64A-QWpmwaKj3YwlEkAhodAzsKtXVt6GgH2NVTXT-va0z4Mq4upvzneQehPYpOaKEsOM-9UeMaG620IxKxiomrXiFZkQLUnFqxQ7azfmREGKtFttohyrOOJVyhu5OcI79ogN8D2MPJcXgO9xADikuShwHPLa4PACepyWcX379jGMDE1GSH3KEoWA_NDgX8M2qysUXmHz3g-_eoNet7zK83dw99O38_fzsQ3X16eLy7OSqCoJpU4EKummNZSBBkeCJVqbmtQlSK6G8IN7WElioQUuh29Yy6QW3oqWM2dAA30Pv1t5FGr8vIRfXxxyg6_wA4zI7paWVRpn_gowYaanhE3i4BkMac07QukWKvU8rR4n73dtNvd2f3hN7sJEu6x6av-Qm8AQcr4EfsYPVv03u-sv1s7JaL-JU9efLwqen6Reupbu9uXAfb9Tp3VyfOsF_AesymRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20859183</pqid></control><display><type>article</type><title>A simple geometrical description of the TrueFISP ideal transient and steady-state signal</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Schmitt, P. ; Griswold, M. A. ; Gulani, V. ; Haase, A. ; Flentje, M. ; Jakob, P. M.</creator><creatorcontrib>Schmitt, P. ; Griswold, M. A. ; Gulani, V. ; Haase, A. ; Flentje, M. ; Jakob, P. M.</creatorcontrib><description>An intuitive approach is presented for assessment of the TrueFISP signal behavior in the transient phase and the steady state, based on geometrical considerations in combination with the Bloch equations. Short formulations are derived for the zenith and phase angle determining the direction of the magnetization vector for which a smooth monoexponential decay is obtained even at considerable off‐resonance frequencies, thus compactly defining the target of various preparation schemes proposed in literature. A pictorial explanation is provided to illustrate how the interplay between RF excitation and relaxation governs the TrueFISP transient phase and steady state. Closed form expressions are developed that describe the signal evolution, accounting for the influence of T1, T2, flip angle, and resonance frequency offset in agreement with recently published studies. These results are obtained directly from basic assumptions, without the need for mathematical treatment or further approximations. The validity of the conceptual framework and the analytical description is verified by simulations based on the Bloch equations as well as with MR phantom experiments. The theory may be used for contrast calculations and has the potential to facilitate improved parameter quantification with magnetization prepared TrueFISP experiments accounting for off‐resonance effects. Magn Reson Med, 2006. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.20738</identifier><identifier>PMID: 16323155</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>balanced SSFP ; decay rate ; Image Processing, Computer-Assisted ; Magnetic Resonance Imaging - methods ; off-resonance ; Phantoms, Imaging ; Signal Processing, Computer-Assisted ; steady state ; transient phase ; TrueFISP</subject><ispartof>Magnetic resonance in medicine, 2006-01, Vol.55 (1), p.177-186</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4278-e6c7df892e5e60ca0768b3b8c57646a40a9b5e2cbe7547ff925a4394f1229cde3</citedby><cites>FETCH-LOGICAL-c4278-e6c7df892e5e60ca0768b3b8c57646a40a9b5e2cbe7547ff925a4394f1229cde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.20738$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.20738$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16323155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmitt, P.</creatorcontrib><creatorcontrib>Griswold, M. A.</creatorcontrib><creatorcontrib>Gulani, V.</creatorcontrib><creatorcontrib>Haase, A.</creatorcontrib><creatorcontrib>Flentje, M.</creatorcontrib><creatorcontrib>Jakob, P. M.</creatorcontrib><title>A simple geometrical description of the TrueFISP ideal transient and steady-state signal</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>An intuitive approach is presented for assessment of the TrueFISP signal behavior in the transient phase and the steady state, based on geometrical considerations in combination with the Bloch equations. Short formulations are derived for the zenith and phase angle determining the direction of the magnetization vector for which a smooth monoexponential decay is obtained even at considerable off‐resonance frequencies, thus compactly defining the target of various preparation schemes proposed in literature. A pictorial explanation is provided to illustrate how the interplay between RF excitation and relaxation governs the TrueFISP transient phase and steady state. Closed form expressions are developed that describe the signal evolution, accounting for the influence of T1, T2, flip angle, and resonance frequency offset in agreement with recently published studies. These results are obtained directly from basic assumptions, without the need for mathematical treatment or further approximations. The validity of the conceptual framework and the analytical description is verified by simulations based on the Bloch equations as well as with MR phantom experiments. The theory may be used for contrast calculations and has the potential to facilitate improved parameter quantification with magnetization prepared TrueFISP experiments accounting for off‐resonance effects. Magn Reson Med, 2006. © 2005 Wiley‐Liss, Inc.</description><subject>balanced SSFP</subject><subject>decay rate</subject><subject>Image Processing, Computer-Assisted</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>off-resonance</subject><subject>Phantoms, Imaging</subject><subject>Signal Processing, Computer-Assisted</subject><subject>steady state</subject><subject>transient phase</subject><subject>TrueFISP</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtPFEEURitEAwO64A-QWpmwaKj3YwlEkAhodAzsKtXVt6GgH2NVTXT-va0z4Mq4upvzneQehPYpOaKEsOM-9UeMaG620IxKxiomrXiFZkQLUnFqxQ7azfmREGKtFttohyrOOJVyhu5OcI79ogN8D2MPJcXgO9xADikuShwHPLa4PACepyWcX379jGMDE1GSH3KEoWA_NDgX8M2qysUXmHz3g-_eoNet7zK83dw99O38_fzsQ3X16eLy7OSqCoJpU4EKummNZSBBkeCJVqbmtQlSK6G8IN7WElioQUuh29Yy6QW3oqWM2dAA30Pv1t5FGr8vIRfXxxyg6_wA4zI7paWVRpn_gowYaanhE3i4BkMac07QukWKvU8rR4n73dtNvd2f3hN7sJEu6x6av-Qm8AQcr4EfsYPVv03u-sv1s7JaL-JU9efLwqen6Reupbu9uXAfb9Tp3VyfOsF_AesymRE</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Schmitt, P.</creator><creator>Griswold, M. A.</creator><creator>Gulani, V.</creator><creator>Haase, A.</creator><creator>Flentje, M.</creator><creator>Jakob, P. M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200601</creationdate><title>A simple geometrical description of the TrueFISP ideal transient and steady-state signal</title><author>Schmitt, P. ; Griswold, M. A. ; Gulani, V. ; Haase, A. ; Flentje, M. ; Jakob, P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4278-e6c7df892e5e60ca0768b3b8c57646a40a9b5e2cbe7547ff925a4394f1229cde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>balanced SSFP</topic><topic>decay rate</topic><topic>Image Processing, Computer-Assisted</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>off-resonance</topic><topic>Phantoms, Imaging</topic><topic>Signal Processing, Computer-Assisted</topic><topic>steady state</topic><topic>transient phase</topic><topic>TrueFISP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitt, P.</creatorcontrib><creatorcontrib>Griswold, M. A.</creatorcontrib><creatorcontrib>Gulani, V.</creatorcontrib><creatorcontrib>Haase, A.</creatorcontrib><creatorcontrib>Flentje, M.</creatorcontrib><creatorcontrib>Jakob, P. M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitt, P.</au><au>Griswold, M. A.</au><au>Gulani, V.</au><au>Haase, A.</au><au>Flentje, M.</au><au>Jakob, P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple geometrical description of the TrueFISP ideal transient and steady-state signal</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2006-01</date><risdate>2006</risdate><volume>55</volume><issue>1</issue><spage>177</spage><epage>186</epage><pages>177-186</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>An intuitive approach is presented for assessment of the TrueFISP signal behavior in the transient phase and the steady state, based on geometrical considerations in combination with the Bloch equations. Short formulations are derived for the zenith and phase angle determining the direction of the magnetization vector for which a smooth monoexponential decay is obtained even at considerable off‐resonance frequencies, thus compactly defining the target of various preparation schemes proposed in literature. A pictorial explanation is provided to illustrate how the interplay between RF excitation and relaxation governs the TrueFISP transient phase and steady state. Closed form expressions are developed that describe the signal evolution, accounting for the influence of T1, T2, flip angle, and resonance frequency offset in agreement with recently published studies. These results are obtained directly from basic assumptions, without the need for mathematical treatment or further approximations. The validity of the conceptual framework and the analytical description is verified by simulations based on the Bloch equations as well as with MR phantom experiments. The theory may be used for contrast calculations and has the potential to facilitate improved parameter quantification with magnetization prepared TrueFISP experiments accounting for off‐resonance effects. Magn Reson Med, 2006. © 2005 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16323155</pmid><doi>10.1002/mrm.20738</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2006-01, Vol.55 (1), p.177-186
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_67595868
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content
subjects balanced SSFP
decay rate
Image Processing, Computer-Assisted
Magnetic Resonance Imaging - methods
off-resonance
Phantoms, Imaging
Signal Processing, Computer-Assisted
steady state
transient phase
TrueFISP
title A simple geometrical description of the TrueFISP ideal transient and steady-state signal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20geometrical%20description%20of%20the%20TrueFISP%20ideal%20transient%20and%20steady-state%20signal&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Schmitt,%20P.&rft.date=2006-01&rft.volume=55&rft.issue=1&rft.spage=177&rft.epage=186&rft.pages=177-186&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.20738&rft_dat=%3Cproquest_cross%3E67595868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20859183&rft_id=info:pmid/16323155&rfr_iscdi=true