Rigidity and Flexibility of Dipeptidyl Peptidase IV: Crystal Structures of and Docking Experiments with DPIV

Dipeptidyl peptidase IV (DPIV) is an α,β-hydrolase-like serine exopeptidase, which removes dipeptides, preferentially with a C-terminal l-Pro residue, from the N terminus of longer peptide substrates. Previously, we determined the tetrameric 1.8 Å crystal structure of native porcine DPIV. Each monom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2006-01, Vol.355 (4), p.768-783
Hauptverfasser: Engel, Michael, Hoffmann, Torsten, Manhart, Susanne, Heiser, Ulrich, Chambre, Sylvie, Huber, Robert, Demuth, Hans-Ulrich, Bode, Wolfram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 783
container_issue 4
container_start_page 768
container_title Journal of molecular biology
container_volume 355
creator Engel, Michael
Hoffmann, Torsten
Manhart, Susanne
Heiser, Ulrich
Chambre, Sylvie
Huber, Robert
Demuth, Hans-Ulrich
Bode, Wolfram
description Dipeptidyl peptidase IV (DPIV) is an α,β-hydrolase-like serine exopeptidase, which removes dipeptides, preferentially with a C-terminal l-Pro residue, from the N terminus of longer peptide substrates. Previously, we determined the tetrameric 1.8 Å crystal structure of native porcine DPIV. Each monomer is composed of a β-propeller and a catalytic domain, which together embrace an internal cavity housing the active centre. This cavity is connected to the bulk solvent by a “propeller opening” and a “side opening”. Here, we analyse DPIV complexes with a t-butyl-Gly-Pro-Ile tripeptide, Pro-boroPro, a piperazine purine compound, and aminoethyl phenyl sulfonylfluoride. The latter two compounds bind to the active-site groove in a compact and a quite bulky manner, respectively, causing considerable shifts of the catalytic Ser630 side-chain and of the Tyr547 phenolic group, which forms the oxyanion hole. The tripeptide, mimicking a peptide substrate, is clamped to the active site through tight interactions via its N-terminal α-ammonium group, the P2 carbonyl group, the P1- l-Pro side-chain, the C-terminal carboxylate group, and the stable orthoacid ester amide formed between the scissile peptide carbonyl group and Ser630 O γ. This stable trapping of the tripeptide could be due to stabilization of the protonated His740 imidazolium cation by the adjacent negatively charged C-terminal carboxylate group, preventing proton transfer to the leaving group nitrogen atom. Docking experiments with the compact rigid 58 residue protein aprotinin, which had been shown to be processed by DPIV, indicate that the Arg1-Pro2 N terminus can access the DPIV active site only upon widening of its side openings, probably by separation of the first and the last propeller blades, and/or of the catalytic and the propeller domain.
doi_str_mv 10.1016/j.jmb.2005.11.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67589774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283605014002</els_id><sourcerecordid>67589774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-9ff371ceb98142611d895c6752e49f2689fa802d6edfc6feb7f10d53005142d03</originalsourceid><addsrcrecordid>eNp9kMtu1DAUQK0KRKeFD-im8opdgm8ejlNWaKaFkSpR9bW1Evu69TSTBNuhnb_HYUZix8q2dO6R7yHkDFgKDPiXTbrZtmnGWJkCpAyKI7IAJupE8Fy8IwvGsizJRM6PyYn3GxbBvBAfyDHwPGesqBaku7VPVtuwo02v6VWHb7a13fweDF3ZEcdg9a6jN38vjUe6frygS7fzoenoXXCTCpNDP-OzYTWoF9s_0cu3EZ3dYh88fbXhma5u1o8fyXvTdB4_Hc5T8nB1eb_8kVz__L5efrtOVF5CSGpj8goUtrWAIuMAWtSl4lWZYVGbjIvaNIJlmqM2ihtsKwNMl3GjMvKa5afk8947uuHXhD7IrfUKu67pcZi8jCpRV1URQdiDyg3eOzRyjJ9u3E4Ck3NiuZExsZwTSwAZE8eZ84N8areo_00cmkbg6x7AuOJvi056ZbFXqK1DFaQe7H_0fwDaAoxC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67589774</pqid></control><display><type>article</type><title>Rigidity and Flexibility of Dipeptidyl Peptidase IV: Crystal Structures of and Docking Experiments with DPIV</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Engel, Michael ; Hoffmann, Torsten ; Manhart, Susanne ; Heiser, Ulrich ; Chambre, Sylvie ; Huber, Robert ; Demuth, Hans-Ulrich ; Bode, Wolfram</creator><creatorcontrib>Engel, Michael ; Hoffmann, Torsten ; Manhart, Susanne ; Heiser, Ulrich ; Chambre, Sylvie ; Huber, Robert ; Demuth, Hans-Ulrich ; Bode, Wolfram</creatorcontrib><description>Dipeptidyl peptidase IV (DPIV) is an α,β-hydrolase-like serine exopeptidase, which removes dipeptides, preferentially with a C-terminal l-Pro residue, from the N terminus of longer peptide substrates. Previously, we determined the tetrameric 1.8 Å crystal structure of native porcine DPIV. Each monomer is composed of a β-propeller and a catalytic domain, which together embrace an internal cavity housing the active centre. This cavity is connected to the bulk solvent by a “propeller opening” and a “side opening”. Here, we analyse DPIV complexes with a t-butyl-Gly-Pro-Ile tripeptide, Pro-boroPro, a piperazine purine compound, and aminoethyl phenyl sulfonylfluoride. The latter two compounds bind to the active-site groove in a compact and a quite bulky manner, respectively, causing considerable shifts of the catalytic Ser630 side-chain and of the Tyr547 phenolic group, which forms the oxyanion hole. The tripeptide, mimicking a peptide substrate, is clamped to the active site through tight interactions via its N-terminal α-ammonium group, the P2 carbonyl group, the P1- l-Pro side-chain, the C-terminal carboxylate group, and the stable orthoacid ester amide formed between the scissile peptide carbonyl group and Ser630 O γ. This stable trapping of the tripeptide could be due to stabilization of the protonated His740 imidazolium cation by the adjacent negatively charged C-terminal carboxylate group, preventing proton transfer to the leaving group nitrogen atom. Docking experiments with the compact rigid 58 residue protein aprotinin, which had been shown to be processed by DPIV, indicate that the Arg1-Pro2 N terminus can access the DPIV active site only upon widening of its side openings, probably by separation of the first and the last propeller blades, and/or of the catalytic and the propeller domain.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2005.11.014</identifier><identifier>PMID: 16330047</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; crystal structure ; Crystallography, X-Ray ; diabetes mellitus ; dipeptidyl peptidase (DPIV) ; Dipeptidyl Peptidase 4 - chemistry ; Dipeptidyl Peptidase 4 - metabolism ; flexibility ; Models, Molecular ; Peptides - chemistry ; Peptides - metabolism ; Pliability ; Protease Inhibitors - chemistry ; Protease Inhibitors - metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; serine proteinase ; Structural Homology, Protein ; Sulfones - chemistry ; Sulfones - metabolism ; Swine</subject><ispartof>Journal of molecular biology, 2006-01, Vol.355 (4), p.768-783</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-9ff371ceb98142611d895c6752e49f2689fa802d6edfc6feb7f10d53005142d03</citedby><cites>FETCH-LOGICAL-c351t-9ff371ceb98142611d895c6752e49f2689fa802d6edfc6feb7f10d53005142d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022283605014002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16330047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Engel, Michael</creatorcontrib><creatorcontrib>Hoffmann, Torsten</creatorcontrib><creatorcontrib>Manhart, Susanne</creatorcontrib><creatorcontrib>Heiser, Ulrich</creatorcontrib><creatorcontrib>Chambre, Sylvie</creatorcontrib><creatorcontrib>Huber, Robert</creatorcontrib><creatorcontrib>Demuth, Hans-Ulrich</creatorcontrib><creatorcontrib>Bode, Wolfram</creatorcontrib><title>Rigidity and Flexibility of Dipeptidyl Peptidase IV: Crystal Structures of and Docking Experiments with DPIV</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Dipeptidyl peptidase IV (DPIV) is an α,β-hydrolase-like serine exopeptidase, which removes dipeptides, preferentially with a C-terminal l-Pro residue, from the N terminus of longer peptide substrates. Previously, we determined the tetrameric 1.8 Å crystal structure of native porcine DPIV. Each monomer is composed of a β-propeller and a catalytic domain, which together embrace an internal cavity housing the active centre. This cavity is connected to the bulk solvent by a “propeller opening” and a “side opening”. Here, we analyse DPIV complexes with a t-butyl-Gly-Pro-Ile tripeptide, Pro-boroPro, a piperazine purine compound, and aminoethyl phenyl sulfonylfluoride. The latter two compounds bind to the active-site groove in a compact and a quite bulky manner, respectively, causing considerable shifts of the catalytic Ser630 side-chain and of the Tyr547 phenolic group, which forms the oxyanion hole. The tripeptide, mimicking a peptide substrate, is clamped to the active site through tight interactions via its N-terminal α-ammonium group, the P2 carbonyl group, the P1- l-Pro side-chain, the C-terminal carboxylate group, and the stable orthoacid ester amide formed between the scissile peptide carbonyl group and Ser630 O γ. This stable trapping of the tripeptide could be due to stabilization of the protonated His740 imidazolium cation by the adjacent negatively charged C-terminal carboxylate group, preventing proton transfer to the leaving group nitrogen atom. Docking experiments with the compact rigid 58 residue protein aprotinin, which had been shown to be processed by DPIV, indicate that the Arg1-Pro2 N terminus can access the DPIV active site only upon widening of its side openings, probably by separation of the first and the last propeller blades, and/or of the catalytic and the propeller domain.</description><subject>Animals</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>diabetes mellitus</subject><subject>dipeptidyl peptidase (DPIV)</subject><subject>Dipeptidyl Peptidase 4 - chemistry</subject><subject>Dipeptidyl Peptidase 4 - metabolism</subject><subject>flexibility</subject><subject>Models, Molecular</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Pliability</subject><subject>Protease Inhibitors - chemistry</subject><subject>Protease Inhibitors - metabolism</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Tertiary</subject><subject>serine proteinase</subject><subject>Structural Homology, Protein</subject><subject>Sulfones - chemistry</subject><subject>Sulfones - metabolism</subject><subject>Swine</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtu1DAUQK0KRKeFD-im8opdgm8ejlNWaKaFkSpR9bW1Evu69TSTBNuhnb_HYUZix8q2dO6R7yHkDFgKDPiXTbrZtmnGWJkCpAyKI7IAJupE8Fy8IwvGsizJRM6PyYn3GxbBvBAfyDHwPGesqBaku7VPVtuwo02v6VWHb7a13fweDF3ZEcdg9a6jN38vjUe6frygS7fzoenoXXCTCpNDP-OzYTWoF9s_0cu3EZ3dYh88fbXhma5u1o8fyXvTdB4_Hc5T8nB1eb_8kVz__L5efrtOVF5CSGpj8goUtrWAIuMAWtSl4lWZYVGbjIvaNIJlmqM2ihtsKwNMl3GjMvKa5afk8947uuHXhD7IrfUKu67pcZi8jCpRV1URQdiDyg3eOzRyjJ9u3E4Ck3NiuZExsZwTSwAZE8eZ84N8areo_00cmkbg6x7AuOJvi056ZbFXqK1DFaQe7H_0fwDaAoxC</recordid><startdate>20060127</startdate><enddate>20060127</enddate><creator>Engel, Michael</creator><creator>Hoffmann, Torsten</creator><creator>Manhart, Susanne</creator><creator>Heiser, Ulrich</creator><creator>Chambre, Sylvie</creator><creator>Huber, Robert</creator><creator>Demuth, Hans-Ulrich</creator><creator>Bode, Wolfram</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060127</creationdate><title>Rigidity and Flexibility of Dipeptidyl Peptidase IV: Crystal Structures of and Docking Experiments with DPIV</title><author>Engel, Michael ; Hoffmann, Torsten ; Manhart, Susanne ; Heiser, Ulrich ; Chambre, Sylvie ; Huber, Robert ; Demuth, Hans-Ulrich ; Bode, Wolfram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-9ff371ceb98142611d895c6752e49f2689fa802d6edfc6feb7f10d53005142d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>diabetes mellitus</topic><topic>dipeptidyl peptidase (DPIV)</topic><topic>Dipeptidyl Peptidase 4 - chemistry</topic><topic>Dipeptidyl Peptidase 4 - metabolism</topic><topic>flexibility</topic><topic>Models, Molecular</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Pliability</topic><topic>Protease Inhibitors - chemistry</topic><topic>Protease Inhibitors - metabolism</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Tertiary</topic><topic>serine proteinase</topic><topic>Structural Homology, Protein</topic><topic>Sulfones - chemistry</topic><topic>Sulfones - metabolism</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engel, Michael</creatorcontrib><creatorcontrib>Hoffmann, Torsten</creatorcontrib><creatorcontrib>Manhart, Susanne</creatorcontrib><creatorcontrib>Heiser, Ulrich</creatorcontrib><creatorcontrib>Chambre, Sylvie</creatorcontrib><creatorcontrib>Huber, Robert</creatorcontrib><creatorcontrib>Demuth, Hans-Ulrich</creatorcontrib><creatorcontrib>Bode, Wolfram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engel, Michael</au><au>Hoffmann, Torsten</au><au>Manhart, Susanne</au><au>Heiser, Ulrich</au><au>Chambre, Sylvie</au><au>Huber, Robert</au><au>Demuth, Hans-Ulrich</au><au>Bode, Wolfram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigidity and Flexibility of Dipeptidyl Peptidase IV: Crystal Structures of and Docking Experiments with DPIV</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2006-01-27</date><risdate>2006</risdate><volume>355</volume><issue>4</issue><spage>768</spage><epage>783</epage><pages>768-783</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Dipeptidyl peptidase IV (DPIV) is an α,β-hydrolase-like serine exopeptidase, which removes dipeptides, preferentially with a C-terminal l-Pro residue, from the N terminus of longer peptide substrates. Previously, we determined the tetrameric 1.8 Å crystal structure of native porcine DPIV. Each monomer is composed of a β-propeller and a catalytic domain, which together embrace an internal cavity housing the active centre. This cavity is connected to the bulk solvent by a “propeller opening” and a “side opening”. Here, we analyse DPIV complexes with a t-butyl-Gly-Pro-Ile tripeptide, Pro-boroPro, a piperazine purine compound, and aminoethyl phenyl sulfonylfluoride. The latter two compounds bind to the active-site groove in a compact and a quite bulky manner, respectively, causing considerable shifts of the catalytic Ser630 side-chain and of the Tyr547 phenolic group, which forms the oxyanion hole. The tripeptide, mimicking a peptide substrate, is clamped to the active site through tight interactions via its N-terminal α-ammonium group, the P2 carbonyl group, the P1- l-Pro side-chain, the C-terminal carboxylate group, and the stable orthoacid ester amide formed between the scissile peptide carbonyl group and Ser630 O γ. This stable trapping of the tripeptide could be due to stabilization of the protonated His740 imidazolium cation by the adjacent negatively charged C-terminal carboxylate group, preventing proton transfer to the leaving group nitrogen atom. Docking experiments with the compact rigid 58 residue protein aprotinin, which had been shown to be processed by DPIV, indicate that the Arg1-Pro2 N terminus can access the DPIV active site only upon widening of its side openings, probably by separation of the first and the last propeller blades, and/or of the catalytic and the propeller domain.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>16330047</pmid><doi>10.1016/j.jmb.2005.11.014</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2006-01, Vol.355 (4), p.768-783
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_67589774
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
crystal structure
Crystallography, X-Ray
diabetes mellitus
dipeptidyl peptidase (DPIV)
Dipeptidyl Peptidase 4 - chemistry
Dipeptidyl Peptidase 4 - metabolism
flexibility
Models, Molecular
Peptides - chemistry
Peptides - metabolism
Pliability
Protease Inhibitors - chemistry
Protease Inhibitors - metabolism
Protein Structure, Quaternary
Protein Structure, Tertiary
serine proteinase
Structural Homology, Protein
Sulfones - chemistry
Sulfones - metabolism
Swine
title Rigidity and Flexibility of Dipeptidyl Peptidase IV: Crystal Structures of and Docking Experiments with DPIV
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigidity%20and%20Flexibility%20of%20Dipeptidyl%20Peptidase%20IV:%20Crystal%20Structures%20of%20and%20Docking%20Experiments%20with%20DPIV&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Engel,%20Michael&rft.date=2006-01-27&rft.volume=355&rft.issue=4&rft.spage=768&rft.epage=783&rft.pages=768-783&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2005.11.014&rft_dat=%3Cproquest_cross%3E67589774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67589774&rft_id=info:pmid/16330047&rft_els_id=S0022283605014002&rfr_iscdi=true