An Adaptable k -Nearest Neighbors Algorithm for MMSE Image Interpolation
We propose an image interpolation algorithm that is nonparametric and learning-based, primarily using an adaptive k -nearest neighbor algorithm with global considerations through Markov random fields. The empirical nature of the proposed algorithm ensures image results that are data-driven and, henc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2009-09, Vol.18 (9), p.1976-1987 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1987 |
---|---|
container_issue | 9 |
container_start_page | 1976 |
container_title | IEEE transactions on image processing |
container_volume | 18 |
creator | Ni, K.S. Nguyen, T.Q. |
description | We propose an image interpolation algorithm that is nonparametric and learning-based, primarily using an adaptive k -nearest neighbor algorithm with global considerations through Markov random fields. The empirical nature of the proposed algorithm ensures image results that are data-driven and, hence, reflect ldquoreal-worldrdquo images well, given enough training data. The proposed algorithm operates on a local window using a dynamic k -nearest neighbor algorithm, where k differs from pixel to pixel: small for test points with highly relevant neighbors and large otherwise. Based on the neighbors that the adaptable k provides and their corresponding relevance measures, a weighted minimum mean squared error solution determines implicitly defined filters specific to low-resolution image content without yielding to the limitations of insufficient training. Additionally, global optimization via single pass Markov approximations, similar to cited nearest neighbor algorithms, provides additional weighting for filter generation. The approach is justified in using a sufficient quantity of training per test point and takes advantage of image properties. For in-depth analysis, we compare to existing methods and draw parallels between intuitive concepts including classification and ideas introduced by other nearest neighbor algorithms by explaining manifolds in low and high dimensions. |
doi_str_mv | 10.1109/TIP.2009.2023706 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_67588223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4967989</ieee_id><sourcerecordid>67588223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-baa78b8cb49fad657b8d78fadbf55fbaa41550c57f79cf6262eb06e05acee5fc3</originalsourceid><addsrcrecordid>eNp90M9LHTEQB_AgFbXauyCUXNqeVifZ_Dw-xNYHagXteUnyJs_V_fFM9h363zfyFnvzkgzMZ4bhS8gpg3PGwF48Lu_POYAtD681qD1yxKxgFYDgn0oNUleaCXtIPuf8DMCEZOqAHBaka1vbI3K9GOhi5TaT8x3SF1rdoUuYJ3qH7frJjynTRbceUzs99TSOid7ePlzRZe_WSJfDhGkzdm5qx-GE7EfXZfwy_8fkz8-rx8vr6ub3r-Xl4qYKwuip8s5p403wwka3UlJ7s9KmlD5KGUtXMCkhSB21DVFxxdGDQpAuIMoY6mPyY7d3k8bXbbm06dscsOvcgOM2N0ZLMEJwVeT3D6XS0hjO6wJhB0Mac04Ym01qe5f-Ngyat5ybknPzlnMz51xGvs67t77H1f-BOdgCvs3A5eC6mNwQ2vzuOIfa2loUd7ZzLSK-t4VV2hpb_wOKkI4D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67588223</pqid></control><display><type>article</type><title>An Adaptable k -Nearest Neighbors Algorithm for MMSE Image Interpolation</title><source>IEEE Electronic Library (IEL)</source><creator>Ni, K.S. ; Nguyen, T.Q.</creator><creatorcontrib>Ni, K.S. ; Nguyen, T.Q.</creatorcontrib><description>We propose an image interpolation algorithm that is nonparametric and learning-based, primarily using an adaptive k -nearest neighbor algorithm with global considerations through Markov random fields. The empirical nature of the proposed algorithm ensures image results that are data-driven and, hence, reflect ldquoreal-worldrdquo images well, given enough training data. The proposed algorithm operates on a local window using a dynamic k -nearest neighbor algorithm, where k differs from pixel to pixel: small for test points with highly relevant neighbors and large otherwise. Based on the neighbors that the adaptable k provides and their corresponding relevance measures, a weighted minimum mean squared error solution determines implicitly defined filters specific to low-resolution image content without yielding to the limitations of insufficient training. Additionally, global optimization via single pass Markov approximations, similar to cited nearest neighbor algorithms, provides additional weighting for filter generation. The approach is justified in using a sufficient quantity of training per test point and takes advantage of image properties. For in-depth analysis, we compare to existing methods and draw parallels between intuitive concepts including classification and ideas introduced by other nearest neighbor algorithms by explaining manifolds in low and high dimensions.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2009.2023706</identifier><identifier>PMID: 19473939</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Approximation ; Classification ; embedding ; Estimation error ; Exact sciences and technology ; Heuristic algorithms ; Humans ; Image processing ; Information, signal and communications theory ; Interpolation ; Laboratories ; Markov processes ; Markov random fields ; nearest neighbor ; Nearest neighbor searches ; Nonlinear filters ; Pixels ; Signal processing ; superresolution ; Telecommunications and information theory ; Testing ; Training ; Training data</subject><ispartof>IEEE transactions on image processing, 2009-09, Vol.18 (9), p.1976-1987</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-baa78b8cb49fad657b8d78fadbf55fbaa41550c57f79cf6262eb06e05acee5fc3</citedby><cites>FETCH-LOGICAL-c487t-baa78b8cb49fad657b8d78fadbf55fbaa41550c57f79cf6262eb06e05acee5fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4967989$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4967989$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22039934$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19473939$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, K.S.</creatorcontrib><creatorcontrib>Nguyen, T.Q.</creatorcontrib><title>An Adaptable k -Nearest Neighbors Algorithm for MMSE Image Interpolation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We propose an image interpolation algorithm that is nonparametric and learning-based, primarily using an adaptive k -nearest neighbor algorithm with global considerations through Markov random fields. The empirical nature of the proposed algorithm ensures image results that are data-driven and, hence, reflect ldquoreal-worldrdquo images well, given enough training data. The proposed algorithm operates on a local window using a dynamic k -nearest neighbor algorithm, where k differs from pixel to pixel: small for test points with highly relevant neighbors and large otherwise. Based on the neighbors that the adaptable k provides and their corresponding relevance measures, a weighted minimum mean squared error solution determines implicitly defined filters specific to low-resolution image content without yielding to the limitations of insufficient training. Additionally, global optimization via single pass Markov approximations, similar to cited nearest neighbor algorithms, provides additional weighting for filter generation. The approach is justified in using a sufficient quantity of training per test point and takes advantage of image properties. For in-depth analysis, we compare to existing methods and draw parallels between intuitive concepts including classification and ideas introduced by other nearest neighbor algorithms by explaining manifolds in low and high dimensions.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Classification</subject><subject>embedding</subject><subject>Estimation error</subject><subject>Exact sciences and technology</subject><subject>Heuristic algorithms</subject><subject>Humans</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Interpolation</subject><subject>Laboratories</subject><subject>Markov processes</subject><subject>Markov random fields</subject><subject>nearest neighbor</subject><subject>Nearest neighbor searches</subject><subject>Nonlinear filters</subject><subject>Pixels</subject><subject>Signal processing</subject><subject>superresolution</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><subject>Training</subject><subject>Training data</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90M9LHTEQB_AgFbXauyCUXNqeVifZ_Dw-xNYHagXteUnyJs_V_fFM9h363zfyFnvzkgzMZ4bhS8gpg3PGwF48Lu_POYAtD681qD1yxKxgFYDgn0oNUleaCXtIPuf8DMCEZOqAHBaka1vbI3K9GOhi5TaT8x3SF1rdoUuYJ3qH7frJjynTRbceUzs99TSOid7ePlzRZe_WSJfDhGkzdm5qx-GE7EfXZfwy_8fkz8-rx8vr6ub3r-Xl4qYKwuip8s5p403wwka3UlJ7s9KmlD5KGUtXMCkhSB21DVFxxdGDQpAuIMoY6mPyY7d3k8bXbbm06dscsOvcgOM2N0ZLMEJwVeT3D6XS0hjO6wJhB0Mac04Ym01qe5f-Ngyat5ybknPzlnMz51xGvs67t77H1f-BOdgCvs3A5eC6mNwQ2vzuOIfa2loUd7ZzLSK-t4VV2hpb_wOKkI4D</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Ni, K.S.</creator><creator>Nguyen, T.Q.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090901</creationdate><title>An Adaptable k -Nearest Neighbors Algorithm for MMSE Image Interpolation</title><author>Ni, K.S. ; Nguyen, T.Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-baa78b8cb49fad657b8d78fadbf55fbaa41550c57f79cf6262eb06e05acee5fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Classification</topic><topic>embedding</topic><topic>Estimation error</topic><topic>Exact sciences and technology</topic><topic>Heuristic algorithms</topic><topic>Humans</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Interpolation</topic><topic>Laboratories</topic><topic>Markov processes</topic><topic>Markov random fields</topic><topic>nearest neighbor</topic><topic>Nearest neighbor searches</topic><topic>Nonlinear filters</topic><topic>Pixels</topic><topic>Signal processing</topic><topic>superresolution</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, K.S.</creatorcontrib><creatorcontrib>Nguyen, T.Q.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ni, K.S.</au><au>Nguyen, T.Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptable k -Nearest Neighbors Algorithm for MMSE Image Interpolation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>18</volume><issue>9</issue><spage>1976</spage><epage>1987</epage><pages>1976-1987</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We propose an image interpolation algorithm that is nonparametric and learning-based, primarily using an adaptive k -nearest neighbor algorithm with global considerations through Markov random fields. The empirical nature of the proposed algorithm ensures image results that are data-driven and, hence, reflect ldquoreal-worldrdquo images well, given enough training data. The proposed algorithm operates on a local window using a dynamic k -nearest neighbor algorithm, where k differs from pixel to pixel: small for test points with highly relevant neighbors and large otherwise. Based on the neighbors that the adaptable k provides and their corresponding relevance measures, a weighted minimum mean squared error solution determines implicitly defined filters specific to low-resolution image content without yielding to the limitations of insufficient training. Additionally, global optimization via single pass Markov approximations, similar to cited nearest neighbor algorithms, provides additional weighting for filter generation. The approach is justified in using a sufficient quantity of training per test point and takes advantage of image properties. For in-depth analysis, we compare to existing methods and draw parallels between intuitive concepts including classification and ideas introduced by other nearest neighbor algorithms by explaining manifolds in low and high dimensions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>19473939</pmid><doi>10.1109/TIP.2009.2023706</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2009-09, Vol.18 (9), p.1976-1987 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_67588223 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Approximation Classification embedding Estimation error Exact sciences and technology Heuristic algorithms Humans Image processing Information, signal and communications theory Interpolation Laboratories Markov processes Markov random fields nearest neighbor Nearest neighbor searches Nonlinear filters Pixels Signal processing superresolution Telecommunications and information theory Testing Training Training data |
title | An Adaptable k -Nearest Neighbors Algorithm for MMSE Image Interpolation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A15%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptable%20k%20-Nearest%20Neighbors%20Algorithm%20for%20MMSE%20Image%20Interpolation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Ni,%20K.S.&rft.date=2009-09-01&rft.volume=18&rft.issue=9&rft.spage=1976&rft.epage=1987&rft.pages=1976-1987&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2009.2023706&rft_dat=%3Cproquest_RIE%3E67588223%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67588223&rft_id=info:pmid/19473939&rft_ieee_id=4967989&rfr_iscdi=true |