Scalable Recombinant Adeno-Associated Virus Production Using Recombinant Herpes Simplex Virus Type 1 Coinfection of Suspension-Adapted Mammalian Cells
Recombinant adeno-associated virus (rAAV) production systems capable of meeting clinical or anticipated commercial-scale manufacturing needs have received relatively little scrutiny compared with the intense research activity afforded the in vivo and in vitro evaluation of rAAV for gene transfer. Pr...
Gespeichert in:
Veröffentlicht in: | Human gene therapy 2009-08, Vol.20 (8), p.861-870 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 870 |
---|---|
container_issue | 8 |
container_start_page | 861 |
container_title | Human gene therapy |
container_volume | 20 |
creator | THOMAS, Darby L WANT, Lijun NIAMKE, Justine JILIN LIU WEN KANG SCOTTI, Marina M YE, Guo-Jie VERES, Gabor KNOP, David R |
description | Recombinant adeno-associated virus (rAAV) production systems capable of meeting clinical or anticipated commercial-scale manufacturing needs have received relatively little scrutiny compared with the intense research activity afforded the in vivo and in vitro evaluation of rAAV for gene transfer. Previously we have reported a highly efficient recombinant herpes simplex virus type 1 (rHSV) complementation system for rAAV production in multiple adherent cell lines; however, production in a scalable format was not demonstrated. Here we report rAAV production by rHSV coinfection of baby hamster kidney (BHK) cells grown in suspension (sBHK cells), using two ICP27-deficient rHSV vectors, one harboring a transgene flanked by the AAV2 inverted terminal repeats and a second bearing the AAV rep2 and capX genes (where X is any rAAV serotype). The rHSV coinfection of sBHK cells produced similar rAAV1/AAT-specific yields (85,400 DNase-resistant particles [DRP]/cell) compared with coinfection of adherent HEK-293 cells (74,600 DRP/cell); however, sBHK cells permitted a 3-fold reduction in the rHSV-rep2/capX vector multiplicity of infection, grew faster than HEK-293 cells, retained specific yields (DRP/cell) at higher cell densities, and had a decreased virus production cycle. Furthermore, sBHK cells were able to produce AAV serotypes 1, 2, 5, and 8 at similar specific yields, using multiple therapeutic genes. rAAV1/AAT production in sBHK cells was scaled to 10-liter disposable bioreactors, using optimized spinner flask infection conditions, and resulted in average volumetric productivities as high as 2.4 x 10(14) DRP/liter. |
doi_str_mv | 10.1089/hum.2009.004 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67572857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A206534786</galeid><sourcerecordid>A206534786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-6cf0fb7147b0e641218d542d251061f82e85643e425cd8efafa6c609aafbbb103</originalsourceid><addsrcrecordid>eNqFkt1r1TAYxos43IfeeS0BcVf2mKT5aC_LwW3CRPFs3oY0fTMjbdIlLbh_xL93OZyiDATJRfKG35M8b_IUxWuCNwTXzYcfy7ihGDcbjNmz4oRwLkvJKH2e15hVJa4YPS5OU_qJMam4kC-KY9Iw0lApTorfO6MH3Q2AvoEJY-e89jNqe_ChbFMKxukZevTdxSWhrzH0i5ld8Og2OX_3RHMFcYKEdm6cBvi1Km4eJkAEbYPzFg7KYNFuSRP4lKuy7fW0v-CzHkc9OO3RFoYhvSyOrB4SvFrns-L24uPN9qq8_nL5adtel4YROZfCWGw7SZjsMAhGKKl7zmhPOcGC2JpCzQWrgFFu-hqstloYgRutbdd1BFdnxfnh3CmG-wXSrEaXTHagPYQlKSG5pDWX_wUprnH2wTL49gDe6QFUbjvMUZs9rFqKBa-YrEWmNv-g8uhhdCZ4sC7vPxG8PwhMDClFsGqKbtTxQRGs9jlQOQdqnwOVc5DxN6vdpRuh_wuvH5-BdyugU06Ajdobl_5w-SEZF7SqHgG8-buV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20807144</pqid></control><display><type>article</type><title>Scalable Recombinant Adeno-Associated Virus Production Using Recombinant Herpes Simplex Virus Type 1 Coinfection of Suspension-Adapted Mammalian Cells</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>THOMAS, Darby L ; WANT, Lijun ; NIAMKE, Justine ; JILIN LIU ; WEN KANG ; SCOTTI, Marina M ; YE, Guo-Jie ; VERES, Gabor ; KNOP, David R</creator><creatorcontrib>THOMAS, Darby L ; WANT, Lijun ; NIAMKE, Justine ; JILIN LIU ; WEN KANG ; SCOTTI, Marina M ; YE, Guo-Jie ; VERES, Gabor ; KNOP, David R</creatorcontrib><description>Recombinant adeno-associated virus (rAAV) production systems capable of meeting clinical or anticipated commercial-scale manufacturing needs have received relatively little scrutiny compared with the intense research activity afforded the in vivo and in vitro evaluation of rAAV for gene transfer. Previously we have reported a highly efficient recombinant herpes simplex virus type 1 (rHSV) complementation system for rAAV production in multiple adherent cell lines; however, production in a scalable format was not demonstrated. Here we report rAAV production by rHSV coinfection of baby hamster kidney (BHK) cells grown in suspension (sBHK cells), using two ICP27-deficient rHSV vectors, one harboring a transgene flanked by the AAV2 inverted terminal repeats and a second bearing the AAV rep2 and capX genes (where X is any rAAV serotype). The rHSV coinfection of sBHK cells produced similar rAAV1/AAT-specific yields (85,400 DNase-resistant particles [DRP]/cell) compared with coinfection of adherent HEK-293 cells (74,600 DRP/cell); however, sBHK cells permitted a 3-fold reduction in the rHSV-rep2/capX vector multiplicity of infection, grew faster than HEK-293 cells, retained specific yields (DRP/cell) at higher cell densities, and had a decreased virus production cycle. Furthermore, sBHK cells were able to produce AAV serotypes 1, 2, 5, and 8 at similar specific yields, using multiple therapeutic genes. rAAV1/AAT production in sBHK cells was scaled to 10-liter disposable bioreactors, using optimized spinner flask infection conditions, and resulted in average volumetric productivities as high as 2.4 x 10(14) DRP/liter.</description><identifier>ISSN: 1043-0342</identifier><identifier>EISSN: 1557-7422</identifier><identifier>DOI: 10.1089/hum.2009.004</identifier><identifier>PMID: 19419276</identifier><identifier>CODEN: HGTHE3</identifier><language>eng</language><publisher>Larchmont, NY: Liebert</publisher><subject>Adeno-associated virus ; Adenoviruses ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Animals ; Applied cell therapy and gene therapy ; Biological and medical sciences ; Bioreactors ; Biotechnology ; Buffers ; Care and treatment ; Cell Count ; Cell Line ; Cell Proliferation ; Cell Survival ; Chromatography ; Dependovirus - classification ; Dependovirus - genetics ; Dependovirus - growth & development ; Fundamental and applied biological sciences. Psychology ; Gene therapy ; Genetic aspects ; Genetic vectors ; Health aspects ; Health. Pharmaceutical industry ; Herpes ; Herpes simplex virus 1 ; Herpesvirus 1, Human - genetics ; Herpesvirus 1, Human - physiology ; Herpesvirus diseases ; Humans ; Industrial applications and implications. Economical aspects ; Medical sciences ; Methods ; Risk factors ; Superinfection ; Time Factors ; Transfusions. Complications. Transfusion reactions. Cell and gene therapy ; Transgenes</subject><ispartof>Human gene therapy, 2009-08, Vol.20 (8), p.861-870</ispartof><rights>2009 INIST-CNRS</rights><rights>COPYRIGHT 2009 Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-6cf0fb7147b0e641218d542d251061f82e85643e425cd8efafa6c609aafbbb103</citedby><cites>FETCH-LOGICAL-c417t-6cf0fb7147b0e641218d542d251061f82e85643e425cd8efafa6c609aafbbb103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21845623$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19419276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>THOMAS, Darby L</creatorcontrib><creatorcontrib>WANT, Lijun</creatorcontrib><creatorcontrib>NIAMKE, Justine</creatorcontrib><creatorcontrib>JILIN LIU</creatorcontrib><creatorcontrib>WEN KANG</creatorcontrib><creatorcontrib>SCOTTI, Marina M</creatorcontrib><creatorcontrib>YE, Guo-Jie</creatorcontrib><creatorcontrib>VERES, Gabor</creatorcontrib><creatorcontrib>KNOP, David R</creatorcontrib><title>Scalable Recombinant Adeno-Associated Virus Production Using Recombinant Herpes Simplex Virus Type 1 Coinfection of Suspension-Adapted Mammalian Cells</title><title>Human gene therapy</title><addtitle>Hum Gene Ther</addtitle><description>Recombinant adeno-associated virus (rAAV) production systems capable of meeting clinical or anticipated commercial-scale manufacturing needs have received relatively little scrutiny compared with the intense research activity afforded the in vivo and in vitro evaluation of rAAV for gene transfer. Previously we have reported a highly efficient recombinant herpes simplex virus type 1 (rHSV) complementation system for rAAV production in multiple adherent cell lines; however, production in a scalable format was not demonstrated. Here we report rAAV production by rHSV coinfection of baby hamster kidney (BHK) cells grown in suspension (sBHK cells), using two ICP27-deficient rHSV vectors, one harboring a transgene flanked by the AAV2 inverted terminal repeats and a second bearing the AAV rep2 and capX genes (where X is any rAAV serotype). The rHSV coinfection of sBHK cells produced similar rAAV1/AAT-specific yields (85,400 DNase-resistant particles [DRP]/cell) compared with coinfection of adherent HEK-293 cells (74,600 DRP/cell); however, sBHK cells permitted a 3-fold reduction in the rHSV-rep2/capX vector multiplicity of infection, grew faster than HEK-293 cells, retained specific yields (DRP/cell) at higher cell densities, and had a decreased virus production cycle. Furthermore, sBHK cells were able to produce AAV serotypes 1, 2, 5, and 8 at similar specific yields, using multiple therapeutic genes. rAAV1/AAT production in sBHK cells was scaled to 10-liter disposable bioreactors, using optimized spinner flask infection conditions, and resulted in average volumetric productivities as high as 2.4 x 10(14) DRP/liter.</description><subject>Adeno-associated virus</subject><subject>Adenoviruses</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Animals</subject><subject>Applied cell therapy and gene therapy</subject><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Buffers</subject><subject>Care and treatment</subject><subject>Cell Count</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Chromatography</subject><subject>Dependovirus - classification</subject><subject>Dependovirus - genetics</subject><subject>Dependovirus - growth & development</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene therapy</subject><subject>Genetic aspects</subject><subject>Genetic vectors</subject><subject>Health aspects</subject><subject>Health. Pharmaceutical industry</subject><subject>Herpes</subject><subject>Herpes simplex virus 1</subject><subject>Herpesvirus 1, Human - genetics</subject><subject>Herpesvirus 1, Human - physiology</subject><subject>Herpesvirus diseases</subject><subject>Humans</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Medical sciences</subject><subject>Methods</subject><subject>Risk factors</subject><subject>Superinfection</subject><subject>Time Factors</subject><subject>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</subject><subject>Transgenes</subject><issn>1043-0342</issn><issn>1557-7422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkt1r1TAYxos43IfeeS0BcVf2mKT5aC_LwW3CRPFs3oY0fTMjbdIlLbh_xL93OZyiDATJRfKG35M8b_IUxWuCNwTXzYcfy7ihGDcbjNmz4oRwLkvJKH2e15hVJa4YPS5OU_qJMam4kC-KY9Iw0lApTorfO6MH3Q2AvoEJY-e89jNqe_ChbFMKxukZevTdxSWhrzH0i5ld8Og2OX_3RHMFcYKEdm6cBvi1Km4eJkAEbYPzFg7KYNFuSRP4lKuy7fW0v-CzHkc9OO3RFoYhvSyOrB4SvFrns-L24uPN9qq8_nL5adtel4YROZfCWGw7SZjsMAhGKKl7zmhPOcGC2JpCzQWrgFFu-hqstloYgRutbdd1BFdnxfnh3CmG-wXSrEaXTHagPYQlKSG5pDWX_wUprnH2wTL49gDe6QFUbjvMUZs9rFqKBa-YrEWmNv-g8uhhdCZ4sC7vPxG8PwhMDClFsGqKbtTxQRGs9jlQOQdqnwOVc5DxN6vdpRuh_wuvH5-BdyugU06Ajdobl_5w-SEZF7SqHgG8-buV</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>THOMAS, Darby L</creator><creator>WANT, Lijun</creator><creator>NIAMKE, Justine</creator><creator>JILIN LIU</creator><creator>WEN KANG</creator><creator>SCOTTI, Marina M</creator><creator>YE, Guo-Jie</creator><creator>VERES, Gabor</creator><creator>KNOP, David R</creator><general>Liebert</general><general>Mary Ann Liebert, Inc</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090801</creationdate><title>Scalable Recombinant Adeno-Associated Virus Production Using Recombinant Herpes Simplex Virus Type 1 Coinfection of Suspension-Adapted Mammalian Cells</title><author>THOMAS, Darby L ; WANT, Lijun ; NIAMKE, Justine ; JILIN LIU ; WEN KANG ; SCOTTI, Marina M ; YE, Guo-Jie ; VERES, Gabor ; KNOP, David R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-6cf0fb7147b0e641218d542d251061f82e85643e425cd8efafa6c609aafbbb103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adeno-associated virus</topic><topic>Adenoviruses</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Animals</topic><topic>Applied cell therapy and gene therapy</topic><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Buffers</topic><topic>Care and treatment</topic><topic>Cell Count</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Chromatography</topic><topic>Dependovirus - classification</topic><topic>Dependovirus - genetics</topic><topic>Dependovirus - growth & development</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene therapy</topic><topic>Genetic aspects</topic><topic>Genetic vectors</topic><topic>Health aspects</topic><topic>Health. Pharmaceutical industry</topic><topic>Herpes</topic><topic>Herpes simplex virus 1</topic><topic>Herpesvirus 1, Human - genetics</topic><topic>Herpesvirus 1, Human - physiology</topic><topic>Herpesvirus diseases</topic><topic>Humans</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Medical sciences</topic><topic>Methods</topic><topic>Risk factors</topic><topic>Superinfection</topic><topic>Time Factors</topic><topic>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>THOMAS, Darby L</creatorcontrib><creatorcontrib>WANT, Lijun</creatorcontrib><creatorcontrib>NIAMKE, Justine</creatorcontrib><creatorcontrib>JILIN LIU</creatorcontrib><creatorcontrib>WEN KANG</creatorcontrib><creatorcontrib>SCOTTI, Marina M</creatorcontrib><creatorcontrib>YE, Guo-Jie</creatorcontrib><creatorcontrib>VERES, Gabor</creatorcontrib><creatorcontrib>KNOP, David R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Human gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>THOMAS, Darby L</au><au>WANT, Lijun</au><au>NIAMKE, Justine</au><au>JILIN LIU</au><au>WEN KANG</au><au>SCOTTI, Marina M</au><au>YE, Guo-Jie</au><au>VERES, Gabor</au><au>KNOP, David R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Recombinant Adeno-Associated Virus Production Using Recombinant Herpes Simplex Virus Type 1 Coinfection of Suspension-Adapted Mammalian Cells</atitle><jtitle>Human gene therapy</jtitle><addtitle>Hum Gene Ther</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>20</volume><issue>8</issue><spage>861</spage><epage>870</epage><pages>861-870</pages><issn>1043-0342</issn><eissn>1557-7422</eissn><coden>HGTHE3</coden><abstract>Recombinant adeno-associated virus (rAAV) production systems capable of meeting clinical or anticipated commercial-scale manufacturing needs have received relatively little scrutiny compared with the intense research activity afforded the in vivo and in vitro evaluation of rAAV for gene transfer. Previously we have reported a highly efficient recombinant herpes simplex virus type 1 (rHSV) complementation system for rAAV production in multiple adherent cell lines; however, production in a scalable format was not demonstrated. Here we report rAAV production by rHSV coinfection of baby hamster kidney (BHK) cells grown in suspension (sBHK cells), using two ICP27-deficient rHSV vectors, one harboring a transgene flanked by the AAV2 inverted terminal repeats and a second bearing the AAV rep2 and capX genes (where X is any rAAV serotype). The rHSV coinfection of sBHK cells produced similar rAAV1/AAT-specific yields (85,400 DNase-resistant particles [DRP]/cell) compared with coinfection of adherent HEK-293 cells (74,600 DRP/cell); however, sBHK cells permitted a 3-fold reduction in the rHSV-rep2/capX vector multiplicity of infection, grew faster than HEK-293 cells, retained specific yields (DRP/cell) at higher cell densities, and had a decreased virus production cycle. Furthermore, sBHK cells were able to produce AAV serotypes 1, 2, 5, and 8 at similar specific yields, using multiple therapeutic genes. rAAV1/AAT production in sBHK cells was scaled to 10-liter disposable bioreactors, using optimized spinner flask infection conditions, and resulted in average volumetric productivities as high as 2.4 x 10(14) DRP/liter.</abstract><cop>Larchmont, NY</cop><pub>Liebert</pub><pmid>19419276</pmid><doi>10.1089/hum.2009.004</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1043-0342 |
ispartof | Human gene therapy, 2009-08, Vol.20 (8), p.861-870 |
issn | 1043-0342 1557-7422 |
language | eng |
recordid | cdi_proquest_miscellaneous_67572857 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Adeno-associated virus Adenoviruses Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Animals Applied cell therapy and gene therapy Biological and medical sciences Bioreactors Biotechnology Buffers Care and treatment Cell Count Cell Line Cell Proliferation Cell Survival Chromatography Dependovirus - classification Dependovirus - genetics Dependovirus - growth & development Fundamental and applied biological sciences. Psychology Gene therapy Genetic aspects Genetic vectors Health aspects Health. Pharmaceutical industry Herpes Herpes simplex virus 1 Herpesvirus 1, Human - genetics Herpesvirus 1, Human - physiology Herpesvirus diseases Humans Industrial applications and implications. Economical aspects Medical sciences Methods Risk factors Superinfection Time Factors Transfusions. Complications. Transfusion reactions. Cell and gene therapy Transgenes |
title | Scalable Recombinant Adeno-Associated Virus Production Using Recombinant Herpes Simplex Virus Type 1 Coinfection of Suspension-Adapted Mammalian Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Recombinant%20Adeno-Associated%20Virus%20Production%20Using%20Recombinant%20Herpes%20Simplex%20Virus%20Type%201%20Coinfection%20of%20Suspension-Adapted%20Mammalian%20Cells&rft.jtitle=Human%20gene%20therapy&rft.au=THOMAS,%20Darby%20L&rft.date=2009-08-01&rft.volume=20&rft.issue=8&rft.spage=861&rft.epage=870&rft.pages=861-870&rft.issn=1043-0342&rft.eissn=1557-7422&rft.coden=HGTHE3&rft_id=info:doi/10.1089/hum.2009.004&rft_dat=%3Cgale_proqu%3EA206534786%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20807144&rft_id=info:pmid/19419276&rft_galeid=A206534786&rfr_iscdi=true |