Predicting Human Serum Albumin Affinity of Interleukin-8 (CXCL8) Inhibitors by 3D-QSPR Approach

A novel class of 2-(R)-phenylpropionamides has been recently reported to inhibit in vitro and in vivo interleukin-8 (CXCL8)-induced biological activities. These CXCL8 inhibitors are derivatives of phenylpropionic nonsteroidal antiinflammatory drugs (NSAIDs), high-affinity ligands for site II of huma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2005-04, Vol.48 (7), p.2469-2479
Hauptverfasser: Aureli, Loretta, Cruciani, Gabriele, Cesta, Maria Candida, Anacardio, Roberto, De Simone, Lucio, Moriconi, Alessio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2479
container_issue 7
container_start_page 2469
container_title Journal of medicinal chemistry
container_volume 48
creator Aureli, Loretta
Cruciani, Gabriele
Cesta, Maria Candida
Anacardio, Roberto
De Simone, Lucio
Moriconi, Alessio
description A novel class of 2-(R)-phenylpropionamides has been recently reported to inhibit in vitro and in vivo interleukin-8 (CXCL8)-induced biological activities. These CXCL8 inhibitors are derivatives of phenylpropionic nonsteroidal antiinflammatory drugs (NSAIDs), high-affinity ligands for site II of human serum albumin (HSA). Up to date, only a limited number of in silico models for the prediction of albumin protein binding are available. A three-dimensional quantitative structure−property relationship (3D-QSPR) approach was used to model the experimental affinity constant (K i) to plasma proteins of 37 structurally related molecules, using physicochemical and 3D-pharmacophoric descriptors. Molecular docking studies highlighted that training set molecules preferentially bind site II of HSA. The obtained model shows satisfactory statistical parameters both in fitting and predicting validation. External validation confirmed the statistical significance of the chemometric model, which is a powerful tool for the prediction of HSA binding in virtual libraries of structurally related compounds.
doi_str_mv 10.1021/jm049227l
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67572726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67572726</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-597f95c4e588a5be3d1181af5590686b74ffc65776e3e1fffcab44373d2860503</originalsourceid><addsrcrecordid>eNpt0M1qGzEUBWBRWhon7SIvULRpSRbT6F-apXFbJ2CoU7uQndDIUiNnRuNKMxC_fRVs4k1XQrofR5cDwCVGXzEi-GbbIVYTIts3YII5QRVTiL0FE4QIqYgg9Ayc57xFCFFM6HtwhrlCWFE5AXqZ3CbYIcQ_8HbsTIQrl8YOTttm7EKEU-9DDMMe9h7excGl1o1PIVYKXs0eZgt1XV4fQxOGPmXY7CH9Vt2vlr_gdLdLvbGPH8A7b9rsPh7PC_D7x_f17LZa_JzfzaaLyjAmh4rX0tfcMseVMrxxdIOxwsZzXiOhRCOZ91ZwKYWjDvtyMQ1jVNINUQJxRC_Al0Nu-fbv6PKgu5Cta1sTXT9mLSSXRBJR4PUB2tTnnJzXuxQ6k_YaI_3Spn5ts9hPx9Cx6dzmJI_1FfD5CEy2pvXJRBvyyQmhEK9pcdXBhTy459e5SU9lMSq5Xi9Xek6QYnQ91-KUa2zW235MsXT3nwX_Ae1nlNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67572726</pqid></control><display><type>article</type><title>Predicting Human Serum Albumin Affinity of Interleukin-8 (CXCL8) Inhibitors by 3D-QSPR Approach</title><source>ACS Publications</source><source>MEDLINE</source><creator>Aureli, Loretta ; Cruciani, Gabriele ; Cesta, Maria Candida ; Anacardio, Roberto ; De Simone, Lucio ; Moriconi, Alessio</creator><creatorcontrib>Aureli, Loretta ; Cruciani, Gabriele ; Cesta, Maria Candida ; Anacardio, Roberto ; De Simone, Lucio ; Moriconi, Alessio</creatorcontrib><description>A novel class of 2-(R)-phenylpropionamides has been recently reported to inhibit in vitro and in vivo interleukin-8 (CXCL8)-induced biological activities. These CXCL8 inhibitors are derivatives of phenylpropionic nonsteroidal antiinflammatory drugs (NSAIDs), high-affinity ligands for site II of human serum albumin (HSA). Up to date, only a limited number of in silico models for the prediction of albumin protein binding are available. A three-dimensional quantitative structure−property relationship (3D-QSPR) approach was used to model the experimental affinity constant (K i) to plasma proteins of 37 structurally related molecules, using physicochemical and 3D-pharmacophoric descriptors. Molecular docking studies highlighted that training set molecules preferentially bind site II of HSA. The obtained model shows satisfactory statistical parameters both in fitting and predicting validation. External validation confirmed the statistical significance of the chemometric model, which is a powerful tool for the prediction of HSA binding in virtual libraries of structurally related compounds.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/jm049227l</identifier><identifier>PMID: 15801837</identifier><identifier>CODEN: JMCMAR</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Anti-Inflammatory Agents, Non-Steroidal - chemistry ; Binding Sites ; Biological and medical sciences ; Bones, joints and connective tissue. Antiinflammatory agents ; Chemical Phenomena ; Chemistry, Physical ; Humans ; In Vitro Techniques ; Interleukin-8 - antagonists &amp; inhibitors ; Interleukin-8 - chemistry ; Medical sciences ; Models, Molecular ; Pharmacology. Drug treatments ; Phenylpropionates - blood ; Phenylpropionates - chemistry ; Protein Binding ; Quantitative Structure-Activity Relationship ; Serum Albumin - chemistry ; Serum Albumin - metabolism ; Stereoisomerism</subject><ispartof>Journal of medicinal chemistry, 2005-04, Vol.48 (7), p.2469-2479</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-597f95c4e588a5be3d1181af5590686b74ffc65776e3e1fffcab44373d2860503</citedby><cites>FETCH-LOGICAL-a447t-597f95c4e588a5be3d1181af5590686b74ffc65776e3e1fffcab44373d2860503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jm049227l$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jm049227l$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16680593$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15801837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aureli, Loretta</creatorcontrib><creatorcontrib>Cruciani, Gabriele</creatorcontrib><creatorcontrib>Cesta, Maria Candida</creatorcontrib><creatorcontrib>Anacardio, Roberto</creatorcontrib><creatorcontrib>De Simone, Lucio</creatorcontrib><creatorcontrib>Moriconi, Alessio</creatorcontrib><title>Predicting Human Serum Albumin Affinity of Interleukin-8 (CXCL8) Inhibitors by 3D-QSPR Approach</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>A novel class of 2-(R)-phenylpropionamides has been recently reported to inhibit in vitro and in vivo interleukin-8 (CXCL8)-induced biological activities. These CXCL8 inhibitors are derivatives of phenylpropionic nonsteroidal antiinflammatory drugs (NSAIDs), high-affinity ligands for site II of human serum albumin (HSA). Up to date, only a limited number of in silico models for the prediction of albumin protein binding are available. A three-dimensional quantitative structure−property relationship (3D-QSPR) approach was used to model the experimental affinity constant (K i) to plasma proteins of 37 structurally related molecules, using physicochemical and 3D-pharmacophoric descriptors. Molecular docking studies highlighted that training set molecules preferentially bind site II of HSA. The obtained model shows satisfactory statistical parameters both in fitting and predicting validation. External validation confirmed the statistical significance of the chemometric model, which is a powerful tool for the prediction of HSA binding in virtual libraries of structurally related compounds.</description><subject>Anti-Inflammatory Agents, Non-Steroidal - chemistry</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Bones, joints and connective tissue. Antiinflammatory agents</subject><subject>Chemical Phenomena</subject><subject>Chemistry, Physical</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Interleukin-8 - antagonists &amp; inhibitors</subject><subject>Interleukin-8 - chemistry</subject><subject>Medical sciences</subject><subject>Models, Molecular</subject><subject>Pharmacology. Drug treatments</subject><subject>Phenylpropionates - blood</subject><subject>Phenylpropionates - chemistry</subject><subject>Protein Binding</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Serum Albumin - chemistry</subject><subject>Serum Albumin - metabolism</subject><subject>Stereoisomerism</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0M1qGzEUBWBRWhon7SIvULRpSRbT6F-apXFbJ2CoU7uQndDIUiNnRuNKMxC_fRVs4k1XQrofR5cDwCVGXzEi-GbbIVYTIts3YII5QRVTiL0FE4QIqYgg9Ayc57xFCFFM6HtwhrlCWFE5AXqZ3CbYIcQ_8HbsTIQrl8YOTttm7EKEU-9DDMMe9h7excGl1o1PIVYKXs0eZgt1XV4fQxOGPmXY7CH9Vt2vlr_gdLdLvbGPH8A7b9rsPh7PC_D7x_f17LZa_JzfzaaLyjAmh4rX0tfcMseVMrxxdIOxwsZzXiOhRCOZ91ZwKYWjDvtyMQ1jVNINUQJxRC_Al0Nu-fbv6PKgu5Cta1sTXT9mLSSXRBJR4PUB2tTnnJzXuxQ6k_YaI_3Spn5ts9hPx9Cx6dzmJI_1FfD5CEy2pvXJRBvyyQmhEK9pcdXBhTy459e5SU9lMSq5Xi9Xek6QYnQ91-KUa2zW235MsXT3nwX_Ae1nlNQ</recordid><startdate>20050407</startdate><enddate>20050407</enddate><creator>Aureli, Loretta</creator><creator>Cruciani, Gabriele</creator><creator>Cesta, Maria Candida</creator><creator>Anacardio, Roberto</creator><creator>De Simone, Lucio</creator><creator>Moriconi, Alessio</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050407</creationdate><title>Predicting Human Serum Albumin Affinity of Interleukin-8 (CXCL8) Inhibitors by 3D-QSPR Approach</title><author>Aureli, Loretta ; Cruciani, Gabriele ; Cesta, Maria Candida ; Anacardio, Roberto ; De Simone, Lucio ; Moriconi, Alessio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-597f95c4e588a5be3d1181af5590686b74ffc65776e3e1fffcab44373d2860503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anti-Inflammatory Agents, Non-Steroidal - chemistry</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Bones, joints and connective tissue. Antiinflammatory agents</topic><topic>Chemical Phenomena</topic><topic>Chemistry, Physical</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Interleukin-8 - antagonists &amp; inhibitors</topic><topic>Interleukin-8 - chemistry</topic><topic>Medical sciences</topic><topic>Models, Molecular</topic><topic>Pharmacology. Drug treatments</topic><topic>Phenylpropionates - blood</topic><topic>Phenylpropionates - chemistry</topic><topic>Protein Binding</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Serum Albumin - chemistry</topic><topic>Serum Albumin - metabolism</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aureli, Loretta</creatorcontrib><creatorcontrib>Cruciani, Gabriele</creatorcontrib><creatorcontrib>Cesta, Maria Candida</creatorcontrib><creatorcontrib>Anacardio, Roberto</creatorcontrib><creatorcontrib>De Simone, Lucio</creatorcontrib><creatorcontrib>Moriconi, Alessio</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aureli, Loretta</au><au>Cruciani, Gabriele</au><au>Cesta, Maria Candida</au><au>Anacardio, Roberto</au><au>De Simone, Lucio</au><au>Moriconi, Alessio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Human Serum Albumin Affinity of Interleukin-8 (CXCL8) Inhibitors by 3D-QSPR Approach</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2005-04-07</date><risdate>2005</risdate><volume>48</volume><issue>7</issue><spage>2469</spage><epage>2479</epage><pages>2469-2479</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><coden>JMCMAR</coden><abstract>A novel class of 2-(R)-phenylpropionamides has been recently reported to inhibit in vitro and in vivo interleukin-8 (CXCL8)-induced biological activities. These CXCL8 inhibitors are derivatives of phenylpropionic nonsteroidal antiinflammatory drugs (NSAIDs), high-affinity ligands for site II of human serum albumin (HSA). Up to date, only a limited number of in silico models for the prediction of albumin protein binding are available. A three-dimensional quantitative structure−property relationship (3D-QSPR) approach was used to model the experimental affinity constant (K i) to plasma proteins of 37 structurally related molecules, using physicochemical and 3D-pharmacophoric descriptors. Molecular docking studies highlighted that training set molecules preferentially bind site II of HSA. The obtained model shows satisfactory statistical parameters both in fitting and predicting validation. External validation confirmed the statistical significance of the chemometric model, which is a powerful tool for the prediction of HSA binding in virtual libraries of structurally related compounds.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>15801837</pmid><doi>10.1021/jm049227l</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2623
ispartof Journal of medicinal chemistry, 2005-04, Vol.48 (7), p.2469-2479
issn 0022-2623
1520-4804
language eng
recordid cdi_proquest_miscellaneous_67572726
source ACS Publications; MEDLINE
subjects Anti-Inflammatory Agents, Non-Steroidal - chemistry
Binding Sites
Biological and medical sciences
Bones, joints and connective tissue. Antiinflammatory agents
Chemical Phenomena
Chemistry, Physical
Humans
In Vitro Techniques
Interleukin-8 - antagonists & inhibitors
Interleukin-8 - chemistry
Medical sciences
Models, Molecular
Pharmacology. Drug treatments
Phenylpropionates - blood
Phenylpropionates - chemistry
Protein Binding
Quantitative Structure-Activity Relationship
Serum Albumin - chemistry
Serum Albumin - metabolism
Stereoisomerism
title Predicting Human Serum Albumin Affinity of Interleukin-8 (CXCL8) Inhibitors by 3D-QSPR Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A47%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Human%20Serum%20Albumin%20Affinity%20of%20Interleukin-8%20(CXCL8)%20Inhibitors%20by%203D-QSPR%20Approach&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Aureli,%20Loretta&rft.date=2005-04-07&rft.volume=48&rft.issue=7&rft.spage=2469&rft.epage=2479&rft.pages=2469-2479&rft.issn=0022-2623&rft.eissn=1520-4804&rft.coden=JMCMAR&rft_id=info:doi/10.1021/jm049227l&rft_dat=%3Cproquest_cross%3E67572726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67572726&rft_id=info:pmid/15801837&rfr_iscdi=true