Molecular dynamics simulation of sucrose- and trehalose-coated carboxy-myoglobin
We performed a room temperature molecular dynamics (MD) simulation on a system containing 1 carboxy‐myoglobin (MbCO) molecule in a sucrose–water matrix of identical composition (89% [sucrose/(sucrose + water)] w/w) as for a previous trehalose–water–MbCO simulation (Cottone et al., Biophys J 2001;80:...
Gespeichert in:
Veröffentlicht in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2005-05, Vol.59 (2), p.291-302 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 302 |
---|---|
container_issue | 2 |
container_start_page | 291 |
container_title | Proteins, structure, function, and bioinformatics |
container_volume | 59 |
creator | Cottone, G. Giuffrida, S. Ciccotti, G. Cordone, L. |
description | We performed a room temperature molecular dynamics (MD) simulation on a system containing 1 carboxy‐myoglobin (MbCO) molecule in a sucrose–water matrix of identical composition (89% [sucrose/(sucrose + water)] w/w) as for a previous trehalose–water–MbCO simulation (Cottone et al., Biophys J 2001;80:931–938). Results show that, as for trehalose, the amplitude of protein atomic mean‐square fluctuations, on the nanosecond timescale, is reduced with respect to aqueous solutions also in sucrose. A detailed comparison as a function of residue number evidences mobility differences along the protein backbone, which can be related to a different efficacy in bioprotection. Different heme pocket structures are observed in the 2 systems. The joint distribution of the magnitude of the electric field at the CO oxygen atom and of the angle between the field and the CO unit vector shows a secondary maximum in sucrose, absent in trehalose. This can explain the CO stretching band profile (A substates distribution) differences evidenced by infrared spectroscopy in sucrose‐ and trehalose‐coated MbCO (Giuffrida et al., J Phys Chem B 2004;108:15415–15421), and in particular the appearance of a further substate in sucrose. Analysis of hydrogen bonds at the protein–solvent interface shows that the fraction of water molecules shared between the protein and the sugar is lower in sucrose than in trehalose, in spite of a larger number of water molecules bound to the protein in the former system, thus indicating a lower protein–matrix coupling, as recently observed by Fourier transform infrared (FTIR) experiments (Giuffrida et al., J Phys Chem B 2004;108:15415–15421). Proteins 2005. © 2005 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/prot.20414 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67571429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67571429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4314-1c258afdec2483e82ecfe02bd3d51a0fc4256fbbf99ed6a48e0cfcf47c4706bb3</originalsourceid><addsrcrecordid>eNp9kEtP20AUhUcIRELopj-g8opFJYc7Lz-WKLQpEo8I0VbqZjQe32kNtiedsUX87-uQFHasru7Vd47uOYR8pDCnAOx87V03ZyCoOCBTCnkaA-XikEwhy9KYy0xOyEkIjwCQ5Dw5JhMqU8a5hClZ3bgaTV9rH5VDq5vKhChUzXjoKtdGzkahN94FjCPdllHn8Y-ut6txusMyMtoXbjPEzeB-166o2lNyZHUd8MN-zsj3r18eFt_i67vl1eLiOjaCUxFTw2SmbYmGiYxjxtBYBFaUvJRUgzWCycQWhc1zLBMtMgRjjRWpESkkRcFn5GznO6b_22PoVFMFg3WtW3R9UEkqUypYPoKfd-A2RvBo1dpXjfaDoqC2_altf-qlvxH-tHftiwbLN3Rf2AjQHfBc1Ti8Y6VW93cP_03jnaYKHW5eNdo_jV_yVKqft0u1hF-X8geTSvB_4pGMXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67571429</pqid></control><display><type>article</type><title>Molecular dynamics simulation of sucrose- and trehalose-coated carboxy-myoglobin</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cottone, G. ; Giuffrida, S. ; Ciccotti, G. ; Cordone, L.</creator><creatorcontrib>Cottone, G. ; Giuffrida, S. ; Ciccotti, G. ; Cordone, L.</creatorcontrib><description>We performed a room temperature molecular dynamics (MD) simulation on a system containing 1 carboxy‐myoglobin (MbCO) molecule in a sucrose–water matrix of identical composition (89% [sucrose/(sucrose + water)] w/w) as for a previous trehalose–water–MbCO simulation (Cottone et al., Biophys J 2001;80:931–938). Results show that, as for trehalose, the amplitude of protein atomic mean‐square fluctuations, on the nanosecond timescale, is reduced with respect to aqueous solutions also in sucrose. A detailed comparison as a function of residue number evidences mobility differences along the protein backbone, which can be related to a different efficacy in bioprotection. Different heme pocket structures are observed in the 2 systems. The joint distribution of the magnitude of the electric field at the CO oxygen atom and of the angle between the field and the CO unit vector shows a secondary maximum in sucrose, absent in trehalose. This can explain the CO stretching band profile (A substates distribution) differences evidenced by infrared spectroscopy in sucrose‐ and trehalose‐coated MbCO (Giuffrida et al., J Phys Chem B 2004;108:15415–15421), and in particular the appearance of a further substate in sucrose. Analysis of hydrogen bonds at the protein–solvent interface shows that the fraction of water molecules shared between the protein and the sugar is lower in sucrose than in trehalose, in spite of a larger number of water molecules bound to the protein in the former system, thus indicating a lower protein–matrix coupling, as recently observed by Fourier transform infrared (FTIR) experiments (Giuffrida et al., J Phys Chem B 2004;108:15415–15421). Proteins 2005. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.20414</identifier><identifier>PMID: 15723350</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Binding Sites ; Carbohydrate Conformation ; Computer Simulation ; Disaccharides - chemistry ; heme pocket ; hydrogen bond ; Kinetics ; mean-square fluctuations ; Models, Molecular ; Myoglobin - chemistry ; protein dynamics ; sucrose ; Sucrose - chemistry ; trehalose ; Trehalose - chemistry</subject><ispartof>Proteins, structure, function, and bioinformatics, 2005-05, Vol.59 (2), p.291-302</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4314-1c258afdec2483e82ecfe02bd3d51a0fc4256fbbf99ed6a48e0cfcf47c4706bb3</citedby><cites>FETCH-LOGICAL-c4314-1c258afdec2483e82ecfe02bd3d51a0fc4256fbbf99ed6a48e0cfcf47c4706bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.20414$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.20414$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15723350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cottone, G.</creatorcontrib><creatorcontrib>Giuffrida, S.</creatorcontrib><creatorcontrib>Ciccotti, G.</creatorcontrib><creatorcontrib>Cordone, L.</creatorcontrib><title>Molecular dynamics simulation of sucrose- and trehalose-coated carboxy-myoglobin</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>We performed a room temperature molecular dynamics (MD) simulation on a system containing 1 carboxy‐myoglobin (MbCO) molecule in a sucrose–water matrix of identical composition (89% [sucrose/(sucrose + water)] w/w) as for a previous trehalose–water–MbCO simulation (Cottone et al., Biophys J 2001;80:931–938). Results show that, as for trehalose, the amplitude of protein atomic mean‐square fluctuations, on the nanosecond timescale, is reduced with respect to aqueous solutions also in sucrose. A detailed comparison as a function of residue number evidences mobility differences along the protein backbone, which can be related to a different efficacy in bioprotection. Different heme pocket structures are observed in the 2 systems. The joint distribution of the magnitude of the electric field at the CO oxygen atom and of the angle between the field and the CO unit vector shows a secondary maximum in sucrose, absent in trehalose. This can explain the CO stretching band profile (A substates distribution) differences evidenced by infrared spectroscopy in sucrose‐ and trehalose‐coated MbCO (Giuffrida et al., J Phys Chem B 2004;108:15415–15421), and in particular the appearance of a further substate in sucrose. Analysis of hydrogen bonds at the protein–solvent interface shows that the fraction of water molecules shared between the protein and the sugar is lower in sucrose than in trehalose, in spite of a larger number of water molecules bound to the protein in the former system, thus indicating a lower protein–matrix coupling, as recently observed by Fourier transform infrared (FTIR) experiments (Giuffrida et al., J Phys Chem B 2004;108:15415–15421). Proteins 2005. © 2005 Wiley‐Liss, Inc.</description><subject>Binding Sites</subject><subject>Carbohydrate Conformation</subject><subject>Computer Simulation</subject><subject>Disaccharides - chemistry</subject><subject>heme pocket</subject><subject>hydrogen bond</subject><subject>Kinetics</subject><subject>mean-square fluctuations</subject><subject>Models, Molecular</subject><subject>Myoglobin - chemistry</subject><subject>protein dynamics</subject><subject>sucrose</subject><subject>Sucrose - chemistry</subject><subject>trehalose</subject><subject>Trehalose - chemistry</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtP20AUhUcIRELopj-g8opFJYc7Lz-WKLQpEo8I0VbqZjQe32kNtiedsUX87-uQFHasru7Vd47uOYR8pDCnAOx87V03ZyCoOCBTCnkaA-XikEwhy9KYy0xOyEkIjwCQ5Dw5JhMqU8a5hClZ3bgaTV9rH5VDq5vKhChUzXjoKtdGzkahN94FjCPdllHn8Y-ut6txusMyMtoXbjPEzeB-166o2lNyZHUd8MN-zsj3r18eFt_i67vl1eLiOjaCUxFTw2SmbYmGiYxjxtBYBFaUvJRUgzWCycQWhc1zLBMtMgRjjRWpESkkRcFn5GznO6b_22PoVFMFg3WtW3R9UEkqUypYPoKfd-A2RvBo1dpXjfaDoqC2_altf-qlvxH-tHftiwbLN3Rf2AjQHfBc1Ti8Y6VW93cP_03jnaYKHW5eNdo_jV_yVKqft0u1hF-X8geTSvB_4pGMXg</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Cottone, G.</creator><creator>Giuffrida, S.</creator><creator>Ciccotti, G.</creator><creator>Cordone, L.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050501</creationdate><title>Molecular dynamics simulation of sucrose- and trehalose-coated carboxy-myoglobin</title><author>Cottone, G. ; Giuffrida, S. ; Ciccotti, G. ; Cordone, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4314-1c258afdec2483e82ecfe02bd3d51a0fc4256fbbf99ed6a48e0cfcf47c4706bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Binding Sites</topic><topic>Carbohydrate Conformation</topic><topic>Computer Simulation</topic><topic>Disaccharides - chemistry</topic><topic>heme pocket</topic><topic>hydrogen bond</topic><topic>Kinetics</topic><topic>mean-square fluctuations</topic><topic>Models, Molecular</topic><topic>Myoglobin - chemistry</topic><topic>protein dynamics</topic><topic>sucrose</topic><topic>Sucrose - chemistry</topic><topic>trehalose</topic><topic>Trehalose - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cottone, G.</creatorcontrib><creatorcontrib>Giuffrida, S.</creatorcontrib><creatorcontrib>Ciccotti, G.</creatorcontrib><creatorcontrib>Cordone, L.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cottone, G.</au><au>Giuffrida, S.</au><au>Ciccotti, G.</au><au>Cordone, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics simulation of sucrose- and trehalose-coated carboxy-myoglobin</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>59</volume><issue>2</issue><spage>291</spage><epage>302</epage><pages>291-302</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>We performed a room temperature molecular dynamics (MD) simulation on a system containing 1 carboxy‐myoglobin (MbCO) molecule in a sucrose–water matrix of identical composition (89% [sucrose/(sucrose + water)] w/w) as for a previous trehalose–water–MbCO simulation (Cottone et al., Biophys J 2001;80:931–938). Results show that, as for trehalose, the amplitude of protein atomic mean‐square fluctuations, on the nanosecond timescale, is reduced with respect to aqueous solutions also in sucrose. A detailed comparison as a function of residue number evidences mobility differences along the protein backbone, which can be related to a different efficacy in bioprotection. Different heme pocket structures are observed in the 2 systems. The joint distribution of the magnitude of the electric field at the CO oxygen atom and of the angle between the field and the CO unit vector shows a secondary maximum in sucrose, absent in trehalose. This can explain the CO stretching band profile (A substates distribution) differences evidenced by infrared spectroscopy in sucrose‐ and trehalose‐coated MbCO (Giuffrida et al., J Phys Chem B 2004;108:15415–15421), and in particular the appearance of a further substate in sucrose. Analysis of hydrogen bonds at the protein–solvent interface shows that the fraction of water molecules shared between the protein and the sugar is lower in sucrose than in trehalose, in spite of a larger number of water molecules bound to the protein in the former system, thus indicating a lower protein–matrix coupling, as recently observed by Fourier transform infrared (FTIR) experiments (Giuffrida et al., J Phys Chem B 2004;108:15415–15421). Proteins 2005. © 2005 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15723350</pmid><doi>10.1002/prot.20414</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-3585 |
ispartof | Proteins, structure, function, and bioinformatics, 2005-05, Vol.59 (2), p.291-302 |
issn | 0887-3585 1097-0134 |
language | eng |
recordid | cdi_proquest_miscellaneous_67571429 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Binding Sites Carbohydrate Conformation Computer Simulation Disaccharides - chemistry heme pocket hydrogen bond Kinetics mean-square fluctuations Models, Molecular Myoglobin - chemistry protein dynamics sucrose Sucrose - chemistry trehalose Trehalose - chemistry |
title | Molecular dynamics simulation of sucrose- and trehalose-coated carboxy-myoglobin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20simulation%20of%20sucrose-%20and%20trehalose-coated%20carboxy-myoglobin&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Cottone,%20G.&rft.date=2005-05-01&rft.volume=59&rft.issue=2&rft.spage=291&rft.epage=302&rft.pages=291-302&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.20414&rft_dat=%3Cproquest_cross%3E67571429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67571429&rft_id=info:pmid/15723350&rfr_iscdi=true |