Interleukin‐6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1

Interleukin‐6 (IL‐6) expression is strongly correlated with the degree of human glioma malignancy and necessary for tumor formation in a mouse model of spontaneous astrocytomas. Yet, exactly how IL‐6 contributes to malignant progression of these brain tumors is still unclear. We have scrutinized the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of cancer 2005-06, Vol.115 (2), p.202-213
Hauptverfasser: Loeffler, Sébastien, Fayard, Bérengère, Weis, Joachim, Weissenberger, Jakob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue 2
container_start_page 202
container_title International journal of cancer
container_volume 115
creator Loeffler, Sébastien
Fayard, Bérengère
Weis, Joachim
Weissenberger, Jakob
description Interleukin‐6 (IL‐6) expression is strongly correlated with the degree of human glioma malignancy and necessary for tumor formation in a mouse model of spontaneous astrocytomas. Yet, exactly how IL‐6 contributes to malignant progression of these brain tumors is still unclear. We have scrutinized the mechanism of transcriptional activation of vascular endothelial growth factor (VEGF) expression by IL‐6 in the mouse brain and in glioblastoma cells. We demonstrate here that IL‐6 drives transcriptional upregulation of VEGF in astrocytes in vivo using glial fibrillary acidic protein (GFAP)‐IL‐6/VEGF‐green fluorescent protein (GFP) double transgenic mice. We further show that IL‐6‐induced VEGF transcription and VEGF secretion by human glioblastoma cells is dependent on signal transducer and activator of transcription 3 (STAT3). By progressive 5′‐deletion analysis we defined the minimal VEGF promoter region for IL‐6‐responsiveness to nucleotides −88/−50. Surprisingly, this promoter region is rich in GC‐boxes and does not contain STAT3 binding elements. Electrophoretic mobility shift and supershift assays revealed binding of Sp1 and Sp3 to the −88/−50 element upon IL‐6 stimulation. Interestingly, preincubation with STAT3 antibody prevented the binding of Sp1 and Sp3 to the −88/−50 element, indicating that STAT3 is involved in IL‐6‐driven Sp1/Sp3 protein‐DNA complex formation. Physical interaction of STAT3 and Sp1 was demonstrated by coimmunoprecipitation. The functional relevance of the STAT3/Sp1 association was corroborated by transient transfection experiments, which showed that overexpression of constitutively active STAT3 increased the minimal VEGF promoter activity. Taken together, our study suggests that IL‐6 promotes tumor angiogenesis in gliomas and describes a novel transcriptional activation mechanism for STAT3 in the context of a STAT3 binding element (SBE)‐free promoter. © 2005 Wiley‐Liss, Inc.
doi_str_mv 10.1002/ijc.20871
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67569221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67569221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4501-e5c35097c284a45ea4a9e220ab8ce6623de3df52b252091929efbf12800a8393</originalsourceid><addsrcrecordid>eNqFkbFu2zAURYmiReO6HfoDBZcGzaCEpERZGgMjSV0E6BCjq0BRTw5TSnRJyoa3fkJ_sEu_pE-RgUxBJuKRh_de8hLykbNzzpi4MA_6XLBiwV-RGWflImGCy9dkhmcsWfA0PyHvQnhgjHPJsrfkhMu8KDLGZ-Tvqo_gLQw_Tf_v95-cmr4ZNAQaveqD9mYbjeuVpUpHs1PjQF1LdyrowSpPoW9cvAdrENl4t4_3tEXUefrlx9XN9RnqURWid_oQURWnndk5qvqGetigxLg7knTrXecwy-Rk4mGEN9a42qKA6xTVYG3A-4o2xoOOCCA_4hiqhrgH6Ond-nKdPurfbfl78qZVNsCH4zon6-ur9fJrcvv9ZrW8vE10JhlPQOpU4r9pUWQqk6AyVYIQTNWFhjwXaQNp00pRCylYyUtRQlu3XBSMqSIt0zk5nWTxDb8GCLHqTBjTqh7cEKp8IfNSCP4iyBepyJkUCJ5NoPYuBA9ttfWmU_5QcVaNnVfYefXYObKfjqJD3UHzRB5LRuDzEcDWlG2xWW3CE4fxBEPrObmYuL2xcHjesVp9W07W_wHxZMeu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17326052</pqid></control><display><type>article</type><title>Interleukin‐6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Loeffler, Sébastien ; Fayard, Bérengère ; Weis, Joachim ; Weissenberger, Jakob</creator><creatorcontrib>Loeffler, Sébastien ; Fayard, Bérengère ; Weis, Joachim ; Weissenberger, Jakob</creatorcontrib><description>Interleukin‐6 (IL‐6) expression is strongly correlated with the degree of human glioma malignancy and necessary for tumor formation in a mouse model of spontaneous astrocytomas. Yet, exactly how IL‐6 contributes to malignant progression of these brain tumors is still unclear. We have scrutinized the mechanism of transcriptional activation of vascular endothelial growth factor (VEGF) expression by IL‐6 in the mouse brain and in glioblastoma cells. We demonstrate here that IL‐6 drives transcriptional upregulation of VEGF in astrocytes in vivo using glial fibrillary acidic protein (GFAP)‐IL‐6/VEGF‐green fluorescent protein (GFP) double transgenic mice. We further show that IL‐6‐induced VEGF transcription and VEGF secretion by human glioblastoma cells is dependent on signal transducer and activator of transcription 3 (STAT3). By progressive 5′‐deletion analysis we defined the minimal VEGF promoter region for IL‐6‐responsiveness to nucleotides −88/−50. Surprisingly, this promoter region is rich in GC‐boxes and does not contain STAT3 binding elements. Electrophoretic mobility shift and supershift assays revealed binding of Sp1 and Sp3 to the −88/−50 element upon IL‐6 stimulation. Interestingly, preincubation with STAT3 antibody prevented the binding of Sp1 and Sp3 to the −88/−50 element, indicating that STAT3 is involved in IL‐6‐driven Sp1/Sp3 protein‐DNA complex formation. Physical interaction of STAT3 and Sp1 was demonstrated by coimmunoprecipitation. The functional relevance of the STAT3/Sp1 association was corroborated by transient transfection experiments, which showed that overexpression of constitutively active STAT3 increased the minimal VEGF promoter activity. Taken together, our study suggests that IL‐6 promotes tumor angiogenesis in gliomas and describes a novel transcriptional activation mechanism for STAT3 in the context of a STAT3 binding element (SBE)‐free promoter. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 0020-7136</identifier><identifier>EISSN: 1097-0215</identifier><identifier>DOI: 10.1002/ijc.20871</identifier><identifier>PMID: 15688401</identifier><identifier>CODEN: IJCNAW</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>angiogenesis ; Animals ; Astrocytes - drug effects ; Astrocytes - metabolism ; Biological and medical sciences ; Cercopithecus aethiops ; COS Cells ; DNA-Binding Proteins - antagonists &amp; inhibitors ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - immunology ; DNA-Binding Proteins - metabolism ; Electrophoretic Mobility Shift Assay ; GC Rich Sequence - genetics ; Gene Expression Regulation ; Glial Fibrillary Acidic Protein - genetics ; Glial Fibrillary Acidic Protein - metabolism ; Glioblastoma - metabolism ; Glioblastoma - pathology ; glioma ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Humans ; IL‐6 ; Immunoprecipitation ; Interleukin-6 - pharmacology ; Medical sciences ; Mice ; Mice, Transgenic ; Neovascularization, Physiologic ; Neurology ; NIH 3T3 Cells ; Promoter Regions, Genetic ; Sequence Deletion ; Sp1 ; Sp1 Transcription Factor - genetics ; Sp1 Transcription Factor - metabolism ; Sp3 Transcription Factor ; STAT3 ; STAT3 Transcription Factor ; Trans-Activators - antagonists &amp; inhibitors ; Trans-Activators - genetics ; Trans-Activators - immunology ; Trans-Activators - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptional Activation ; Tumors ; Tumors of the nervous system. Phacomatoses ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism ; VEGF</subject><ispartof>International journal of cancer, 2005-06, Vol.115 (2), p.202-213</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright 2005 Wiley-Liss, Inc</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4501-e5c35097c284a45ea4a9e220ab8ce6623de3df52b252091929efbf12800a8393</citedby><cites>FETCH-LOGICAL-c4501-e5c35097c284a45ea4a9e220ab8ce6623de3df52b252091929efbf12800a8393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fijc.20871$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fijc.20871$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16752017$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15688401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loeffler, Sébastien</creatorcontrib><creatorcontrib>Fayard, Bérengère</creatorcontrib><creatorcontrib>Weis, Joachim</creatorcontrib><creatorcontrib>Weissenberger, Jakob</creatorcontrib><title>Interleukin‐6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1</title><title>International journal of cancer</title><addtitle>Int J Cancer</addtitle><description>Interleukin‐6 (IL‐6) expression is strongly correlated with the degree of human glioma malignancy and necessary for tumor formation in a mouse model of spontaneous astrocytomas. Yet, exactly how IL‐6 contributes to malignant progression of these brain tumors is still unclear. We have scrutinized the mechanism of transcriptional activation of vascular endothelial growth factor (VEGF) expression by IL‐6 in the mouse brain and in glioblastoma cells. We demonstrate here that IL‐6 drives transcriptional upregulation of VEGF in astrocytes in vivo using glial fibrillary acidic protein (GFAP)‐IL‐6/VEGF‐green fluorescent protein (GFP) double transgenic mice. We further show that IL‐6‐induced VEGF transcription and VEGF secretion by human glioblastoma cells is dependent on signal transducer and activator of transcription 3 (STAT3). By progressive 5′‐deletion analysis we defined the minimal VEGF promoter region for IL‐6‐responsiveness to nucleotides −88/−50. Surprisingly, this promoter region is rich in GC‐boxes and does not contain STAT3 binding elements. Electrophoretic mobility shift and supershift assays revealed binding of Sp1 and Sp3 to the −88/−50 element upon IL‐6 stimulation. Interestingly, preincubation with STAT3 antibody prevented the binding of Sp1 and Sp3 to the −88/−50 element, indicating that STAT3 is involved in IL‐6‐driven Sp1/Sp3 protein‐DNA complex formation. Physical interaction of STAT3 and Sp1 was demonstrated by coimmunoprecipitation. The functional relevance of the STAT3/Sp1 association was corroborated by transient transfection experiments, which showed that overexpression of constitutively active STAT3 increased the minimal VEGF promoter activity. Taken together, our study suggests that IL‐6 promotes tumor angiogenesis in gliomas and describes a novel transcriptional activation mechanism for STAT3 in the context of a STAT3 binding element (SBE)‐free promoter. © 2005 Wiley‐Liss, Inc.</description><subject>angiogenesis</subject><subject>Animals</subject><subject>Astrocytes - drug effects</subject><subject>Astrocytes - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cercopithecus aethiops</subject><subject>COS Cells</subject><subject>DNA-Binding Proteins - antagonists &amp; inhibitors</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - immunology</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>GC Rich Sequence - genetics</subject><subject>Gene Expression Regulation</subject><subject>Glial Fibrillary Acidic Protein - genetics</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>glioma</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humans</subject><subject>IL‐6</subject><subject>Immunoprecipitation</subject><subject>Interleukin-6 - pharmacology</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neovascularization, Physiologic</subject><subject>Neurology</subject><subject>NIH 3T3 Cells</subject><subject>Promoter Regions, Genetic</subject><subject>Sequence Deletion</subject><subject>Sp1</subject><subject>Sp1 Transcription Factor - genetics</subject><subject>Sp1 Transcription Factor - metabolism</subject><subject>Sp3 Transcription Factor</subject><subject>STAT3</subject><subject>STAT3 Transcription Factor</subject><subject>Trans-Activators - antagonists &amp; inhibitors</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - immunology</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptional Activation</subject><subject>Tumors</subject><subject>Tumors of the nervous system. Phacomatoses</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>VEGF</subject><issn>0020-7136</issn><issn>1097-0215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbFu2zAURYmiReO6HfoDBZcGzaCEpERZGgMjSV0E6BCjq0BRTw5TSnRJyoa3fkJ_sEu_pE-RgUxBJuKRh_de8hLykbNzzpi4MA_6XLBiwV-RGWflImGCy9dkhmcsWfA0PyHvQnhgjHPJsrfkhMu8KDLGZ-Tvqo_gLQw_Tf_v95-cmr4ZNAQaveqD9mYbjeuVpUpHs1PjQF1LdyrowSpPoW9cvAdrENl4t4_3tEXUefrlx9XN9RnqURWid_oQURWnndk5qvqGetigxLg7knTrXecwy-Rk4mGEN9a42qKA6xTVYG3A-4o2xoOOCCA_4hiqhrgH6Ond-nKdPurfbfl78qZVNsCH4zon6-ur9fJrcvv9ZrW8vE10JhlPQOpU4r9pUWQqk6AyVYIQTNWFhjwXaQNp00pRCylYyUtRQlu3XBSMqSIt0zk5nWTxDb8GCLHqTBjTqh7cEKp8IfNSCP4iyBepyJkUCJ5NoPYuBA9ttfWmU_5QcVaNnVfYefXYObKfjqJD3UHzRB5LRuDzEcDWlG2xWW3CE4fxBEPrObmYuL2xcHjesVp9W07W_wHxZMeu</recordid><startdate>20050610</startdate><enddate>20050610</enddate><creator>Loeffler, Sébastien</creator><creator>Fayard, Bérengère</creator><creator>Weis, Joachim</creator><creator>Weissenberger, Jakob</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>20050610</creationdate><title>Interleukin‐6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1</title><author>Loeffler, Sébastien ; Fayard, Bérengère ; Weis, Joachim ; Weissenberger, Jakob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4501-e5c35097c284a45ea4a9e220ab8ce6623de3df52b252091929efbf12800a8393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>angiogenesis</topic><topic>Animals</topic><topic>Astrocytes - drug effects</topic><topic>Astrocytes - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cercopithecus aethiops</topic><topic>COS Cells</topic><topic>DNA-Binding Proteins - antagonists &amp; inhibitors</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - immunology</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>GC Rich Sequence - genetics</topic><topic>Gene Expression Regulation</topic><topic>Glial Fibrillary Acidic Protein - genetics</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>glioma</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humans</topic><topic>IL‐6</topic><topic>Immunoprecipitation</topic><topic>Interleukin-6 - pharmacology</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neovascularization, Physiologic</topic><topic>Neurology</topic><topic>NIH 3T3 Cells</topic><topic>Promoter Regions, Genetic</topic><topic>Sequence Deletion</topic><topic>Sp1</topic><topic>Sp1 Transcription Factor - genetics</topic><topic>Sp1 Transcription Factor - metabolism</topic><topic>Sp3 Transcription Factor</topic><topic>STAT3</topic><topic>STAT3 Transcription Factor</topic><topic>Trans-Activators - antagonists &amp; inhibitors</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - immunology</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptional Activation</topic><topic>Tumors</topic><topic>Tumors of the nervous system. Phacomatoses</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>VEGF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loeffler, Sébastien</creatorcontrib><creatorcontrib>Fayard, Bérengère</creatorcontrib><creatorcontrib>Weis, Joachim</creatorcontrib><creatorcontrib>Weissenberger, Jakob</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loeffler, Sébastien</au><au>Fayard, Bérengère</au><au>Weis, Joachim</au><au>Weissenberger, Jakob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interleukin‐6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1</atitle><jtitle>International journal of cancer</jtitle><addtitle>Int J Cancer</addtitle><date>2005-06-10</date><risdate>2005</risdate><volume>115</volume><issue>2</issue><spage>202</spage><epage>213</epage><pages>202-213</pages><issn>0020-7136</issn><eissn>1097-0215</eissn><coden>IJCNAW</coden><abstract>Interleukin‐6 (IL‐6) expression is strongly correlated with the degree of human glioma malignancy and necessary for tumor formation in a mouse model of spontaneous astrocytomas. Yet, exactly how IL‐6 contributes to malignant progression of these brain tumors is still unclear. We have scrutinized the mechanism of transcriptional activation of vascular endothelial growth factor (VEGF) expression by IL‐6 in the mouse brain and in glioblastoma cells. We demonstrate here that IL‐6 drives transcriptional upregulation of VEGF in astrocytes in vivo using glial fibrillary acidic protein (GFAP)‐IL‐6/VEGF‐green fluorescent protein (GFP) double transgenic mice. We further show that IL‐6‐induced VEGF transcription and VEGF secretion by human glioblastoma cells is dependent on signal transducer and activator of transcription 3 (STAT3). By progressive 5′‐deletion analysis we defined the minimal VEGF promoter region for IL‐6‐responsiveness to nucleotides −88/−50. Surprisingly, this promoter region is rich in GC‐boxes and does not contain STAT3 binding elements. Electrophoretic mobility shift and supershift assays revealed binding of Sp1 and Sp3 to the −88/−50 element upon IL‐6 stimulation. Interestingly, preincubation with STAT3 antibody prevented the binding of Sp1 and Sp3 to the −88/−50 element, indicating that STAT3 is involved in IL‐6‐driven Sp1/Sp3 protein‐DNA complex formation. Physical interaction of STAT3 and Sp1 was demonstrated by coimmunoprecipitation. The functional relevance of the STAT3/Sp1 association was corroborated by transient transfection experiments, which showed that overexpression of constitutively active STAT3 increased the minimal VEGF promoter activity. Taken together, our study suggests that IL‐6 promotes tumor angiogenesis in gliomas and describes a novel transcriptional activation mechanism for STAT3 in the context of a STAT3 binding element (SBE)‐free promoter. © 2005 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15688401</pmid><doi>10.1002/ijc.20871</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7136
ispartof International journal of cancer, 2005-06, Vol.115 (2), p.202-213
issn 0020-7136
1097-0215
language eng
recordid cdi_proquest_miscellaneous_67569221
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects angiogenesis
Animals
Astrocytes - drug effects
Astrocytes - metabolism
Biological and medical sciences
Cercopithecus aethiops
COS Cells
DNA-Binding Proteins - antagonists & inhibitors
DNA-Binding Proteins - genetics
DNA-Binding Proteins - immunology
DNA-Binding Proteins - metabolism
Electrophoretic Mobility Shift Assay
GC Rich Sequence - genetics
Gene Expression Regulation
Glial Fibrillary Acidic Protein - genetics
Glial Fibrillary Acidic Protein - metabolism
Glioblastoma - metabolism
Glioblastoma - pathology
glioma
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Humans
IL‐6
Immunoprecipitation
Interleukin-6 - pharmacology
Medical sciences
Mice
Mice, Transgenic
Neovascularization, Physiologic
Neurology
NIH 3T3 Cells
Promoter Regions, Genetic
Sequence Deletion
Sp1
Sp1 Transcription Factor - genetics
Sp1 Transcription Factor - metabolism
Sp3 Transcription Factor
STAT3
STAT3 Transcription Factor
Trans-Activators - antagonists & inhibitors
Trans-Activators - genetics
Trans-Activators - immunology
Trans-Activators - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Transcriptional Activation
Tumors
Tumors of the nervous system. Phacomatoses
Vascular Endothelial Growth Factor A - genetics
Vascular Endothelial Growth Factor A - metabolism
VEGF
title Interleukin‐6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interleukin%E2%80%906%20induces%20transcriptional%20activation%20of%20vascular%20endothelial%20growth%20factor%20(VEGF)%20in%20astrocytes%20in%20vivo%20and%20regulates%20VEGF%20promoter%20activity%20in%20glioblastoma%20cells%20via%20direct%20interaction%20between%20STAT3%20and%20Sp1&rft.jtitle=International%20journal%20of%20cancer&rft.au=Loeffler,%20S%C3%A9bastien&rft.date=2005-06-10&rft.volume=115&rft.issue=2&rft.spage=202&rft.epage=213&rft.pages=202-213&rft.issn=0020-7136&rft.eissn=1097-0215&rft.coden=IJCNAW&rft_id=info:doi/10.1002/ijc.20871&rft_dat=%3Cproquest_cross%3E67569221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17326052&rft_id=info:pmid/15688401&rfr_iscdi=true