Interleukin‐6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1
Interleukin‐6 (IL‐6) expression is strongly correlated with the degree of human glioma malignancy and necessary for tumor formation in a mouse model of spontaneous astrocytomas. Yet, exactly how IL‐6 contributes to malignant progression of these brain tumors is still unclear. We have scrutinized the...
Gespeichert in:
Veröffentlicht in: | International journal of cancer 2005-06, Vol.115 (2), p.202-213 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 213 |
---|---|
container_issue | 2 |
container_start_page | 202 |
container_title | International journal of cancer |
container_volume | 115 |
creator | Loeffler, Sébastien Fayard, Bérengère Weis, Joachim Weissenberger, Jakob |
description | Interleukin‐6 (IL‐6) expression is strongly correlated with the degree of human glioma malignancy and necessary for tumor formation in a mouse model of spontaneous astrocytomas. Yet, exactly how IL‐6 contributes to malignant progression of these brain tumors is still unclear. We have scrutinized the mechanism of transcriptional activation of vascular endothelial growth factor (VEGF) expression by IL‐6 in the mouse brain and in glioblastoma cells. We demonstrate here that IL‐6 drives transcriptional upregulation of VEGF in astrocytes in vivo using glial fibrillary acidic protein (GFAP)‐IL‐6/VEGF‐green fluorescent protein (GFP) double transgenic mice. We further show that IL‐6‐induced VEGF transcription and VEGF secretion by human glioblastoma cells is dependent on signal transducer and activator of transcription 3 (STAT3). By progressive 5′‐deletion analysis we defined the minimal VEGF promoter region for IL‐6‐responsiveness to nucleotides −88/−50. Surprisingly, this promoter region is rich in GC‐boxes and does not contain STAT3 binding elements. Electrophoretic mobility shift and supershift assays revealed binding of Sp1 and Sp3 to the −88/−50 element upon IL‐6 stimulation. Interestingly, preincubation with STAT3 antibody prevented the binding of Sp1 and Sp3 to the −88/−50 element, indicating that STAT3 is involved in IL‐6‐driven Sp1/Sp3 protein‐DNA complex formation. Physical interaction of STAT3 and Sp1 was demonstrated by coimmunoprecipitation. The functional relevance of the STAT3/Sp1 association was corroborated by transient transfection experiments, which showed that overexpression of constitutively active STAT3 increased the minimal VEGF promoter activity. Taken together, our study suggests that IL‐6 promotes tumor angiogenesis in gliomas and describes a novel transcriptional activation mechanism for STAT3 in the context of a STAT3 binding element (SBE)‐free promoter. © 2005 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/ijc.20871 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67569221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67569221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4501-e5c35097c284a45ea4a9e220ab8ce6623de3df52b252091929efbf12800a8393</originalsourceid><addsrcrecordid>eNqFkbFu2zAURYmiReO6HfoDBZcGzaCEpERZGgMjSV0E6BCjq0BRTw5TSnRJyoa3fkJ_sEu_pE-RgUxBJuKRh_de8hLykbNzzpi4MA_6XLBiwV-RGWflImGCy9dkhmcsWfA0PyHvQnhgjHPJsrfkhMu8KDLGZ-Tvqo_gLQw_Tf_v95-cmr4ZNAQaveqD9mYbjeuVpUpHs1PjQF1LdyrowSpPoW9cvAdrENl4t4_3tEXUefrlx9XN9RnqURWid_oQURWnndk5qvqGetigxLg7knTrXecwy-Rk4mGEN9a42qKA6xTVYG3A-4o2xoOOCCA_4hiqhrgH6Ond-nKdPurfbfl78qZVNsCH4zon6-ur9fJrcvv9ZrW8vE10JhlPQOpU4r9pUWQqk6AyVYIQTNWFhjwXaQNp00pRCylYyUtRQlu3XBSMqSIt0zk5nWTxDb8GCLHqTBjTqh7cEKp8IfNSCP4iyBepyJkUCJ5NoPYuBA9ttfWmU_5QcVaNnVfYefXYObKfjqJD3UHzRB5LRuDzEcDWlG2xWW3CE4fxBEPrObmYuL2xcHjesVp9W07W_wHxZMeu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17326052</pqid></control><display><type>article</type><title>Interleukin‐6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Loeffler, Sébastien ; Fayard, Bérengère ; Weis, Joachim ; Weissenberger, Jakob</creator><creatorcontrib>Loeffler, Sébastien ; Fayard, Bérengère ; Weis, Joachim ; Weissenberger, Jakob</creatorcontrib><description>Interleukin‐6 (IL‐6) expression is strongly correlated with the degree of human glioma malignancy and necessary for tumor formation in a mouse model of spontaneous astrocytomas. Yet, exactly how IL‐6 contributes to malignant progression of these brain tumors is still unclear. We have scrutinized the mechanism of transcriptional activation of vascular endothelial growth factor (VEGF) expression by IL‐6 in the mouse brain and in glioblastoma cells. We demonstrate here that IL‐6 drives transcriptional upregulation of VEGF in astrocytes in vivo using glial fibrillary acidic protein (GFAP)‐IL‐6/VEGF‐green fluorescent protein (GFP) double transgenic mice. We further show that IL‐6‐induced VEGF transcription and VEGF secretion by human glioblastoma cells is dependent on signal transducer and activator of transcription 3 (STAT3). By progressive 5′‐deletion analysis we defined the minimal VEGF promoter region for IL‐6‐responsiveness to nucleotides −88/−50. Surprisingly, this promoter region is rich in GC‐boxes and does not contain STAT3 binding elements. Electrophoretic mobility shift and supershift assays revealed binding of Sp1 and Sp3 to the −88/−50 element upon IL‐6 stimulation. Interestingly, preincubation with STAT3 antibody prevented the binding of Sp1 and Sp3 to the −88/−50 element, indicating that STAT3 is involved in IL‐6‐driven Sp1/Sp3 protein‐DNA complex formation. Physical interaction of STAT3 and Sp1 was demonstrated by coimmunoprecipitation. The functional relevance of the STAT3/Sp1 association was corroborated by transient transfection experiments, which showed that overexpression of constitutively active STAT3 increased the minimal VEGF promoter activity. Taken together, our study suggests that IL‐6 promotes tumor angiogenesis in gliomas and describes a novel transcriptional activation mechanism for STAT3 in the context of a STAT3 binding element (SBE)‐free promoter. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 0020-7136</identifier><identifier>EISSN: 1097-0215</identifier><identifier>DOI: 10.1002/ijc.20871</identifier><identifier>PMID: 15688401</identifier><identifier>CODEN: IJCNAW</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>angiogenesis ; Animals ; Astrocytes - drug effects ; Astrocytes - metabolism ; Biological and medical sciences ; Cercopithecus aethiops ; COS Cells ; DNA-Binding Proteins - antagonists & inhibitors ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - immunology ; DNA-Binding Proteins - metabolism ; Electrophoretic Mobility Shift Assay ; GC Rich Sequence - genetics ; Gene Expression Regulation ; Glial Fibrillary Acidic Protein - genetics ; Glial Fibrillary Acidic Protein - metabolism ; Glioblastoma - metabolism ; Glioblastoma - pathology ; glioma ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Humans ; IL‐6 ; Immunoprecipitation ; Interleukin-6 - pharmacology ; Medical sciences ; Mice ; Mice, Transgenic ; Neovascularization, Physiologic ; Neurology ; NIH 3T3 Cells ; Promoter Regions, Genetic ; Sequence Deletion ; Sp1 ; Sp1 Transcription Factor - genetics ; Sp1 Transcription Factor - metabolism ; Sp3 Transcription Factor ; STAT3 ; STAT3 Transcription Factor ; Trans-Activators - antagonists & inhibitors ; Trans-Activators - genetics ; Trans-Activators - immunology ; Trans-Activators - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptional Activation ; Tumors ; Tumors of the nervous system. Phacomatoses ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism ; VEGF</subject><ispartof>International journal of cancer, 2005-06, Vol.115 (2), p.202-213</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright 2005 Wiley-Liss, Inc</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4501-e5c35097c284a45ea4a9e220ab8ce6623de3df52b252091929efbf12800a8393</citedby><cites>FETCH-LOGICAL-c4501-e5c35097c284a45ea4a9e220ab8ce6623de3df52b252091929efbf12800a8393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fijc.20871$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fijc.20871$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16752017$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15688401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loeffler, Sébastien</creatorcontrib><creatorcontrib>Fayard, Bérengère</creatorcontrib><creatorcontrib>Weis, Joachim</creatorcontrib><creatorcontrib>Weissenberger, Jakob</creatorcontrib><title>Interleukin‐6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1</title><title>International journal of cancer</title><addtitle>Int J Cancer</addtitle><description>Interleukin‐6 (IL‐6) expression is strongly correlated with the degree of human glioma malignancy and necessary for tumor formation in a mouse model of spontaneous astrocytomas. Yet, exactly how IL‐6 contributes to malignant progression of these brain tumors is still unclear. We have scrutinized the mechanism of transcriptional activation of vascular endothelial growth factor (VEGF) expression by IL‐6 in the mouse brain and in glioblastoma cells. We demonstrate here that IL‐6 drives transcriptional upregulation of VEGF in astrocytes in vivo using glial fibrillary acidic protein (GFAP)‐IL‐6/VEGF‐green fluorescent protein (GFP) double transgenic mice. We further show that IL‐6‐induced VEGF transcription and VEGF secretion by human glioblastoma cells is dependent on signal transducer and activator of transcription 3 (STAT3). By progressive 5′‐deletion analysis we defined the minimal VEGF promoter region for IL‐6‐responsiveness to nucleotides −88/−50. Surprisingly, this promoter region is rich in GC‐boxes and does not contain STAT3 binding elements. Electrophoretic mobility shift and supershift assays revealed binding of Sp1 and Sp3 to the −88/−50 element upon IL‐6 stimulation. Interestingly, preincubation with STAT3 antibody prevented the binding of Sp1 and Sp3 to the −88/−50 element, indicating that STAT3 is involved in IL‐6‐driven Sp1/Sp3 protein‐DNA complex formation. Physical interaction of STAT3 and Sp1 was demonstrated by coimmunoprecipitation. The functional relevance of the STAT3/Sp1 association was corroborated by transient transfection experiments, which showed that overexpression of constitutively active STAT3 increased the minimal VEGF promoter activity. Taken together, our study suggests that IL‐6 promotes tumor angiogenesis in gliomas and describes a novel transcriptional activation mechanism for STAT3 in the context of a STAT3 binding element (SBE)‐free promoter. © 2005 Wiley‐Liss, Inc.</description><subject>angiogenesis</subject><subject>Animals</subject><subject>Astrocytes - drug effects</subject><subject>Astrocytes - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cercopithecus aethiops</subject><subject>COS Cells</subject><subject>DNA-Binding Proteins - antagonists & inhibitors</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - immunology</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>GC Rich Sequence - genetics</subject><subject>Gene Expression Regulation</subject><subject>Glial Fibrillary Acidic Protein - genetics</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>glioma</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humans</subject><subject>IL‐6</subject><subject>Immunoprecipitation</subject><subject>Interleukin-6 - pharmacology</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neovascularization, Physiologic</subject><subject>Neurology</subject><subject>NIH 3T3 Cells</subject><subject>Promoter Regions, Genetic</subject><subject>Sequence Deletion</subject><subject>Sp1</subject><subject>Sp1 Transcription Factor - genetics</subject><subject>Sp1 Transcription Factor - metabolism</subject><subject>Sp3 Transcription Factor</subject><subject>STAT3</subject><subject>STAT3 Transcription Factor</subject><subject>Trans-Activators - antagonists & inhibitors</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - immunology</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptional Activation</subject><subject>Tumors</subject><subject>Tumors of the nervous system. Phacomatoses</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>VEGF</subject><issn>0020-7136</issn><issn>1097-0215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbFu2zAURYmiReO6HfoDBZcGzaCEpERZGgMjSV0E6BCjq0BRTw5TSnRJyoa3fkJ_sEu_pE-RgUxBJuKRh_de8hLykbNzzpi4MA_6XLBiwV-RGWflImGCy9dkhmcsWfA0PyHvQnhgjHPJsrfkhMu8KDLGZ-Tvqo_gLQw_Tf_v95-cmr4ZNAQaveqD9mYbjeuVpUpHs1PjQF1LdyrowSpPoW9cvAdrENl4t4_3tEXUefrlx9XN9RnqURWid_oQURWnndk5qvqGetigxLg7knTrXecwy-Rk4mGEN9a42qKA6xTVYG3A-4o2xoOOCCA_4hiqhrgH6Ond-nKdPurfbfl78qZVNsCH4zon6-ur9fJrcvv9ZrW8vE10JhlPQOpU4r9pUWQqk6AyVYIQTNWFhjwXaQNp00pRCylYyUtRQlu3XBSMqSIt0zk5nWTxDb8GCLHqTBjTqh7cEKp8IfNSCP4iyBepyJkUCJ5NoPYuBA9ttfWmU_5QcVaNnVfYefXYObKfjqJD3UHzRB5LRuDzEcDWlG2xWW3CE4fxBEPrObmYuL2xcHjesVp9W07W_wHxZMeu</recordid><startdate>20050610</startdate><enddate>20050610</enddate><creator>Loeffler, Sébastien</creator><creator>Fayard, Bérengère</creator><creator>Weis, Joachim</creator><creator>Weissenberger, Jakob</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>20050610</creationdate><title>Interleukin‐6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1</title><author>Loeffler, Sébastien ; Fayard, Bérengère ; Weis, Joachim ; Weissenberger, Jakob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4501-e5c35097c284a45ea4a9e220ab8ce6623de3df52b252091929efbf12800a8393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>angiogenesis</topic><topic>Animals</topic><topic>Astrocytes - drug effects</topic><topic>Astrocytes - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cercopithecus aethiops</topic><topic>COS Cells</topic><topic>DNA-Binding Proteins - antagonists & inhibitors</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - immunology</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>GC Rich Sequence - genetics</topic><topic>Gene Expression Regulation</topic><topic>Glial Fibrillary Acidic Protein - genetics</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>glioma</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humans</topic><topic>IL‐6</topic><topic>Immunoprecipitation</topic><topic>Interleukin-6 - pharmacology</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neovascularization, Physiologic</topic><topic>Neurology</topic><topic>NIH 3T3 Cells</topic><topic>Promoter Regions, Genetic</topic><topic>Sequence Deletion</topic><topic>Sp1</topic><topic>Sp1 Transcription Factor - genetics</topic><topic>Sp1 Transcription Factor - metabolism</topic><topic>Sp3 Transcription Factor</topic><topic>STAT3</topic><topic>STAT3 Transcription Factor</topic><topic>Trans-Activators - antagonists & inhibitors</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - immunology</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptional Activation</topic><topic>Tumors</topic><topic>Tumors of the nervous system. Phacomatoses</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>VEGF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loeffler, Sébastien</creatorcontrib><creatorcontrib>Fayard, Bérengère</creatorcontrib><creatorcontrib>Weis, Joachim</creatorcontrib><creatorcontrib>Weissenberger, Jakob</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loeffler, Sébastien</au><au>Fayard, Bérengère</au><au>Weis, Joachim</au><au>Weissenberger, Jakob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interleukin‐6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1</atitle><jtitle>International journal of cancer</jtitle><addtitle>Int J Cancer</addtitle><date>2005-06-10</date><risdate>2005</risdate><volume>115</volume><issue>2</issue><spage>202</spage><epage>213</epage><pages>202-213</pages><issn>0020-7136</issn><eissn>1097-0215</eissn><coden>IJCNAW</coden><abstract>Interleukin‐6 (IL‐6) expression is strongly correlated with the degree of human glioma malignancy and necessary for tumor formation in a mouse model of spontaneous astrocytomas. Yet, exactly how IL‐6 contributes to malignant progression of these brain tumors is still unclear. We have scrutinized the mechanism of transcriptional activation of vascular endothelial growth factor (VEGF) expression by IL‐6 in the mouse brain and in glioblastoma cells. We demonstrate here that IL‐6 drives transcriptional upregulation of VEGF in astrocytes in vivo using glial fibrillary acidic protein (GFAP)‐IL‐6/VEGF‐green fluorescent protein (GFP) double transgenic mice. We further show that IL‐6‐induced VEGF transcription and VEGF secretion by human glioblastoma cells is dependent on signal transducer and activator of transcription 3 (STAT3). By progressive 5′‐deletion analysis we defined the minimal VEGF promoter region for IL‐6‐responsiveness to nucleotides −88/−50. Surprisingly, this promoter region is rich in GC‐boxes and does not contain STAT3 binding elements. Electrophoretic mobility shift and supershift assays revealed binding of Sp1 and Sp3 to the −88/−50 element upon IL‐6 stimulation. Interestingly, preincubation with STAT3 antibody prevented the binding of Sp1 and Sp3 to the −88/−50 element, indicating that STAT3 is involved in IL‐6‐driven Sp1/Sp3 protein‐DNA complex formation. Physical interaction of STAT3 and Sp1 was demonstrated by coimmunoprecipitation. The functional relevance of the STAT3/Sp1 association was corroborated by transient transfection experiments, which showed that overexpression of constitutively active STAT3 increased the minimal VEGF promoter activity. Taken together, our study suggests that IL‐6 promotes tumor angiogenesis in gliomas and describes a novel transcriptional activation mechanism for STAT3 in the context of a STAT3 binding element (SBE)‐free promoter. © 2005 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15688401</pmid><doi>10.1002/ijc.20871</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7136 |
ispartof | International journal of cancer, 2005-06, Vol.115 (2), p.202-213 |
issn | 0020-7136 1097-0215 |
language | eng |
recordid | cdi_proquest_miscellaneous_67569221 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | angiogenesis Animals Astrocytes - drug effects Astrocytes - metabolism Biological and medical sciences Cercopithecus aethiops COS Cells DNA-Binding Proteins - antagonists & inhibitors DNA-Binding Proteins - genetics DNA-Binding Proteins - immunology DNA-Binding Proteins - metabolism Electrophoretic Mobility Shift Assay GC Rich Sequence - genetics Gene Expression Regulation Glial Fibrillary Acidic Protein - genetics Glial Fibrillary Acidic Protein - metabolism Glioblastoma - metabolism Glioblastoma - pathology glioma Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Humans IL‐6 Immunoprecipitation Interleukin-6 - pharmacology Medical sciences Mice Mice, Transgenic Neovascularization, Physiologic Neurology NIH 3T3 Cells Promoter Regions, Genetic Sequence Deletion Sp1 Sp1 Transcription Factor - genetics Sp1 Transcription Factor - metabolism Sp3 Transcription Factor STAT3 STAT3 Transcription Factor Trans-Activators - antagonists & inhibitors Trans-Activators - genetics Trans-Activators - immunology Trans-Activators - metabolism Transcription Factors - genetics Transcription Factors - metabolism Transcriptional Activation Tumors Tumors of the nervous system. Phacomatoses Vascular Endothelial Growth Factor A - genetics Vascular Endothelial Growth Factor A - metabolism VEGF |
title | Interleukin‐6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interleukin%E2%80%906%20induces%20transcriptional%20activation%20of%20vascular%20endothelial%20growth%20factor%20(VEGF)%20in%20astrocytes%20in%20vivo%20and%20regulates%20VEGF%20promoter%20activity%20in%20glioblastoma%20cells%20via%20direct%20interaction%20between%20STAT3%20and%20Sp1&rft.jtitle=International%20journal%20of%20cancer&rft.au=Loeffler,%20S%C3%A9bastien&rft.date=2005-06-10&rft.volume=115&rft.issue=2&rft.spage=202&rft.epage=213&rft.pages=202-213&rft.issn=0020-7136&rft.eissn=1097-0215&rft.coden=IJCNAW&rft_id=info:doi/10.1002/ijc.20871&rft_dat=%3Cproquest_cross%3E67569221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17326052&rft_id=info:pmid/15688401&rfr_iscdi=true |