Bone ingrowth simulation for a concept glenoid component design
Glenoid component loosening is the major problem of total shoulder arthroplasty. It is possible that uncemented component may be able to achieve superior fixation relative to cemented component. One option for uncemented glenoid is to use porous tantalum backing. Bone ingrowth into the porous backin...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2005-05, Vol.38 (5), p.1023-1033 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1033 |
---|---|
container_issue | 5 |
container_start_page | 1023 |
container_title | Journal of biomechanics |
container_volume | 38 |
creator | Andreykiv, A. Prendergast, P.J. van Keulen, F. Swieszkowski, W. Rozing, P.M. |
description | Glenoid component loosening is the major problem of total shoulder arthroplasty. It is possible that uncemented component may be able to achieve superior fixation relative to cemented component. One option for uncemented glenoid is to use porous tantalum backing. Bone ingrowth into the porous backing requires a degree of stability to be achieved directly post-operatively. This paper investigates the feasibility of bone ingrowth with respect to the influence of primary fixation, elastic properties of the backing and friction at the bone prosthesis interface. Finite element models of three glenoid components with different primary fixation configurations are created. Bone ingrowth into the porous backing is modelled based on the magnitude of the relative interface micromotions and mechanoregulation of the mesenchymal stem cells that migrated via the bonded part of the interface. Primary fixation had the most influence on bone ingrowth. The simulation showed that its major role was not to firmly interlock the prosthesis, but rather provide such a distribution of load, that would result in reduction of the peak interface micromotions. Should primary fixation be provided, friction has a secondary importance with respect to bone ingrowth while the influence of stiffness was counter intuitive: a less stiff backing material inhibits bone ingrowth by higher interface micromotions and stimulation of fibrous tissue formation within the backing. |
doi_str_mv | 10.1016/j.jbiomech.2004.05.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67564836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929004002878</els_id><sourcerecordid>67564836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-90c675d7e6ee365437ca9b8ff6044977ad51d5d4017e6210402fb2b18dbbe1cc3</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVISLZpv8JiKORmZ2RJln3qnyVtAoFckrOwpfGujC1tJbuh3z5adkuhl5zEwO89zbxHyJpCQYFWt0MxdNZPqHdFCcALEAVwfkZWtJYsL1kN52QFUNK8KRu4Ih9iHABActlckisqZCNFzVfky3fvMLNuG_zrvMuinZaxna13We9D1mbaO437OduO6Lw1aZ72SeHmzGC0W_eRXPTtGPHT6b0mLz_unjf3-ePTz4fNt8dc84bOeQO6ksJIrBBZJTiTum26uu-rtHUjZWsENcJwoAkpKXAo-67saG26DqnW7JrcHH33wf9aMM5qslHjOLYO_RJVcq94zap3QSoZE5LTBH7-Dxz8Elw6QlFgaWtB6wNVHSkdfIwBe7UPdmrDnwSpQxNqUH-bUIcmFAiVbkrC9cl-6SY0_2Sn6BPw9Qhgiu23xaCitpjSNjagnpXx9r0_3gBQMpwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034915181</pqid></control><display><type>article</type><title>Bone ingrowth simulation for a concept glenoid component design</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Andreykiv, A. ; Prendergast, P.J. ; van Keulen, F. ; Swieszkowski, W. ; Rozing, P.M.</creator><creatorcontrib>Andreykiv, A. ; Prendergast, P.J. ; van Keulen, F. ; Swieszkowski, W. ; Rozing, P.M.</creatorcontrib><description>Glenoid component loosening is the major problem of total shoulder arthroplasty. It is possible that uncemented component may be able to achieve superior fixation relative to cemented component. One option for uncemented glenoid is to use porous tantalum backing. Bone ingrowth into the porous backing requires a degree of stability to be achieved directly post-operatively. This paper investigates the feasibility of bone ingrowth with respect to the influence of primary fixation, elastic properties of the backing and friction at the bone prosthesis interface. Finite element models of three glenoid components with different primary fixation configurations are created. Bone ingrowth into the porous backing is modelled based on the magnitude of the relative interface micromotions and mechanoregulation of the mesenchymal stem cells that migrated via the bonded part of the interface. Primary fixation had the most influence on bone ingrowth. The simulation showed that its major role was not to firmly interlock the prosthesis, but rather provide such a distribution of load, that would result in reduction of the peak interface micromotions. Should primary fixation be provided, friction has a secondary importance with respect to bone ingrowth while the influence of stiffness was counter intuitive: a less stiff backing material inhibits bone ingrowth by higher interface micromotions and stimulation of fibrous tissue formation within the backing.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2004.05.044</identifier><identifier>PMID: 15797584</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Bone ingrowth ; Bone–implant interface ; Cell Differentiation - physiology ; Cell Movement - physiology ; Coated Materials, Biocompatible - chemistry ; Computer Simulation ; Computer-Aided Design ; Elasticity ; Equipment Failure Analysis - methods ; Feasibility Studies ; Friction ; Glenoid prosthesis ; Hedrocel ; Humans ; Joint Prosthesis ; Joint replacement surgery ; Materials Testing ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - physiology ; Models, Biological ; Osseointegration - physiology ; Osteoblasts - cytology ; Osteoblasts - physiology ; Osteogenesis - physiology ; Permeability ; Polyethylene ; Porosity ; Prosthesis Design - methods ; Shoulder ; Shoulder Joint - physiopathology ; Shoulder Joint - surgery ; Simulation ; Stress, Mechanical ; Tantalum - chemistry ; Tissue differentiation</subject><ispartof>Journal of biomechanics, 2005-05, Vol.38 (5), p.1023-1033</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-90c675d7e6ee365437ca9b8ff6044977ad51d5d4017e6210402fb2b18dbbe1cc3</citedby><cites>FETCH-LOGICAL-c491t-90c675d7e6ee365437ca9b8ff6044977ad51d5d4017e6210402fb2b18dbbe1cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021929004002878$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15797584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andreykiv, A.</creatorcontrib><creatorcontrib>Prendergast, P.J.</creatorcontrib><creatorcontrib>van Keulen, F.</creatorcontrib><creatorcontrib>Swieszkowski, W.</creatorcontrib><creatorcontrib>Rozing, P.M.</creatorcontrib><title>Bone ingrowth simulation for a concept glenoid component design</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Glenoid component loosening is the major problem of total shoulder arthroplasty. It is possible that uncemented component may be able to achieve superior fixation relative to cemented component. One option for uncemented glenoid is to use porous tantalum backing. Bone ingrowth into the porous backing requires a degree of stability to be achieved directly post-operatively. This paper investigates the feasibility of bone ingrowth with respect to the influence of primary fixation, elastic properties of the backing and friction at the bone prosthesis interface. Finite element models of three glenoid components with different primary fixation configurations are created. Bone ingrowth into the porous backing is modelled based on the magnitude of the relative interface micromotions and mechanoregulation of the mesenchymal stem cells that migrated via the bonded part of the interface. Primary fixation had the most influence on bone ingrowth. The simulation showed that its major role was not to firmly interlock the prosthesis, but rather provide such a distribution of load, that would result in reduction of the peak interface micromotions. Should primary fixation be provided, friction has a secondary importance with respect to bone ingrowth while the influence of stiffness was counter intuitive: a less stiff backing material inhibits bone ingrowth by higher interface micromotions and stimulation of fibrous tissue formation within the backing.</description><subject>Bone ingrowth</subject><subject>Bone–implant interface</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Movement - physiology</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Computer Simulation</subject><subject>Computer-Aided Design</subject><subject>Elasticity</subject><subject>Equipment Failure Analysis - methods</subject><subject>Feasibility Studies</subject><subject>Friction</subject><subject>Glenoid prosthesis</subject><subject>Hedrocel</subject><subject>Humans</subject><subject>Joint Prosthesis</subject><subject>Joint replacement surgery</subject><subject>Materials Testing</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - physiology</subject><subject>Models, Biological</subject><subject>Osseointegration - physiology</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - physiology</subject><subject>Osteogenesis - physiology</subject><subject>Permeability</subject><subject>Polyethylene</subject><subject>Porosity</subject><subject>Prosthesis Design - methods</subject><subject>Shoulder</subject><subject>Shoulder Joint - physiopathology</subject><subject>Shoulder Joint - surgery</subject><subject>Simulation</subject><subject>Stress, Mechanical</subject><subject>Tantalum - chemistry</subject><subject>Tissue differentiation</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU9r3DAQxUVISLZpv8JiKORmZ2RJln3qnyVtAoFckrOwpfGujC1tJbuh3z5adkuhl5zEwO89zbxHyJpCQYFWt0MxdNZPqHdFCcALEAVwfkZWtJYsL1kN52QFUNK8KRu4Ih9iHABActlckisqZCNFzVfky3fvMLNuG_zrvMuinZaxna13We9D1mbaO437OduO6Lw1aZ72SeHmzGC0W_eRXPTtGPHT6b0mLz_unjf3-ePTz4fNt8dc84bOeQO6ksJIrBBZJTiTum26uu-rtHUjZWsENcJwoAkpKXAo-67saG26DqnW7JrcHH33wf9aMM5qslHjOLYO_RJVcq94zap3QSoZE5LTBH7-Dxz8Elw6QlFgaWtB6wNVHSkdfIwBe7UPdmrDnwSpQxNqUH-bUIcmFAiVbkrC9cl-6SY0_2Sn6BPw9Qhgiu23xaCitpjSNjagnpXx9r0_3gBQMpwg</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>Andreykiv, A.</creator><creator>Prendergast, P.J.</creator><creator>van Keulen, F.</creator><creator>Swieszkowski, W.</creator><creator>Rozing, P.M.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>200505</creationdate><title>Bone ingrowth simulation for a concept glenoid component design</title><author>Andreykiv, A. ; Prendergast, P.J. ; van Keulen, F. ; Swieszkowski, W. ; Rozing, P.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-90c675d7e6ee365437ca9b8ff6044977ad51d5d4017e6210402fb2b18dbbe1cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bone ingrowth</topic><topic>Bone–implant interface</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Movement - physiology</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Computer Simulation</topic><topic>Computer-Aided Design</topic><topic>Elasticity</topic><topic>Equipment Failure Analysis - methods</topic><topic>Feasibility Studies</topic><topic>Friction</topic><topic>Glenoid prosthesis</topic><topic>Hedrocel</topic><topic>Humans</topic><topic>Joint Prosthesis</topic><topic>Joint replacement surgery</topic><topic>Materials Testing</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - physiology</topic><topic>Models, Biological</topic><topic>Osseointegration - physiology</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - physiology</topic><topic>Osteogenesis - physiology</topic><topic>Permeability</topic><topic>Polyethylene</topic><topic>Porosity</topic><topic>Prosthesis Design - methods</topic><topic>Shoulder</topic><topic>Shoulder Joint - physiopathology</topic><topic>Shoulder Joint - surgery</topic><topic>Simulation</topic><topic>Stress, Mechanical</topic><topic>Tantalum - chemistry</topic><topic>Tissue differentiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreykiv, A.</creatorcontrib><creatorcontrib>Prendergast, P.J.</creatorcontrib><creatorcontrib>van Keulen, F.</creatorcontrib><creatorcontrib>Swieszkowski, W.</creatorcontrib><creatorcontrib>Rozing, P.M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreykiv, A.</au><au>Prendergast, P.J.</au><au>van Keulen, F.</au><au>Swieszkowski, W.</au><au>Rozing, P.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bone ingrowth simulation for a concept glenoid component design</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2005-05</date><risdate>2005</risdate><volume>38</volume><issue>5</issue><spage>1023</spage><epage>1033</epage><pages>1023-1033</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Glenoid component loosening is the major problem of total shoulder arthroplasty. It is possible that uncemented component may be able to achieve superior fixation relative to cemented component. One option for uncemented glenoid is to use porous tantalum backing. Bone ingrowth into the porous backing requires a degree of stability to be achieved directly post-operatively. This paper investigates the feasibility of bone ingrowth with respect to the influence of primary fixation, elastic properties of the backing and friction at the bone prosthesis interface. Finite element models of three glenoid components with different primary fixation configurations are created. Bone ingrowth into the porous backing is modelled based on the magnitude of the relative interface micromotions and mechanoregulation of the mesenchymal stem cells that migrated via the bonded part of the interface. Primary fixation had the most influence on bone ingrowth. The simulation showed that its major role was not to firmly interlock the prosthesis, but rather provide such a distribution of load, that would result in reduction of the peak interface micromotions. Should primary fixation be provided, friction has a secondary importance with respect to bone ingrowth while the influence of stiffness was counter intuitive: a less stiff backing material inhibits bone ingrowth by higher interface micromotions and stimulation of fibrous tissue formation within the backing.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>15797584</pmid><doi>10.1016/j.jbiomech.2004.05.044</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2005-05, Vol.38 (5), p.1023-1033 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_proquest_miscellaneous_67564836 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Bone ingrowth Bone–implant interface Cell Differentiation - physiology Cell Movement - physiology Coated Materials, Biocompatible - chemistry Computer Simulation Computer-Aided Design Elasticity Equipment Failure Analysis - methods Feasibility Studies Friction Glenoid prosthesis Hedrocel Humans Joint Prosthesis Joint replacement surgery Materials Testing Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - physiology Models, Biological Osseointegration - physiology Osteoblasts - cytology Osteoblasts - physiology Osteogenesis - physiology Permeability Polyethylene Porosity Prosthesis Design - methods Shoulder Shoulder Joint - physiopathology Shoulder Joint - surgery Simulation Stress, Mechanical Tantalum - chemistry Tissue differentiation |
title | Bone ingrowth simulation for a concept glenoid component design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bone%20ingrowth%20simulation%20for%20a%20concept%20glenoid%20component%20design&rft.jtitle=Journal%20of%20biomechanics&rft.au=Andreykiv,%20A.&rft.date=2005-05&rft.volume=38&rft.issue=5&rft.spage=1023&rft.epage=1033&rft.pages=1023-1033&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2004.05.044&rft_dat=%3Cproquest_cross%3E67564836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034915181&rft_id=info:pmid/15797584&rft_els_id=S0021929004002878&rfr_iscdi=true |