Bone ingrowth simulation for a concept glenoid component design

Glenoid component loosening is the major problem of total shoulder arthroplasty. It is possible that uncemented component may be able to achieve superior fixation relative to cemented component. One option for uncemented glenoid is to use porous tantalum backing. Bone ingrowth into the porous backin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2005-05, Vol.38 (5), p.1023-1033
Hauptverfasser: Andreykiv, A., Prendergast, P.J., van Keulen, F., Swieszkowski, W., Rozing, P.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1033
container_issue 5
container_start_page 1023
container_title Journal of biomechanics
container_volume 38
creator Andreykiv, A.
Prendergast, P.J.
van Keulen, F.
Swieszkowski, W.
Rozing, P.M.
description Glenoid component loosening is the major problem of total shoulder arthroplasty. It is possible that uncemented component may be able to achieve superior fixation relative to cemented component. One option for uncemented glenoid is to use porous tantalum backing. Bone ingrowth into the porous backing requires a degree of stability to be achieved directly post-operatively. This paper investigates the feasibility of bone ingrowth with respect to the influence of primary fixation, elastic properties of the backing and friction at the bone prosthesis interface. Finite element models of three glenoid components with different primary fixation configurations are created. Bone ingrowth into the porous backing is modelled based on the magnitude of the relative interface micromotions and mechanoregulation of the mesenchymal stem cells that migrated via the bonded part of the interface. Primary fixation had the most influence on bone ingrowth. The simulation showed that its major role was not to firmly interlock the prosthesis, but rather provide such a distribution of load, that would result in reduction of the peak interface micromotions. Should primary fixation be provided, friction has a secondary importance with respect to bone ingrowth while the influence of stiffness was counter intuitive: a less stiff backing material inhibits bone ingrowth by higher interface micromotions and stimulation of fibrous tissue formation within the backing.
doi_str_mv 10.1016/j.jbiomech.2004.05.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67564836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929004002878</els_id><sourcerecordid>67564836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-90c675d7e6ee365437ca9b8ff6044977ad51d5d4017e6210402fb2b18dbbe1cc3</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVISLZpv8JiKORmZ2RJln3qnyVtAoFckrOwpfGujC1tJbuh3z5adkuhl5zEwO89zbxHyJpCQYFWt0MxdNZPqHdFCcALEAVwfkZWtJYsL1kN52QFUNK8KRu4Ih9iHABActlckisqZCNFzVfky3fvMLNuG_zrvMuinZaxna13We9D1mbaO437OduO6Lw1aZ72SeHmzGC0W_eRXPTtGPHT6b0mLz_unjf3-ePTz4fNt8dc84bOeQO6ksJIrBBZJTiTum26uu-rtHUjZWsENcJwoAkpKXAo-67saG26DqnW7JrcHH33wf9aMM5qslHjOLYO_RJVcq94zap3QSoZE5LTBH7-Dxz8Elw6QlFgaWtB6wNVHSkdfIwBe7UPdmrDnwSpQxNqUH-bUIcmFAiVbkrC9cl-6SY0_2Sn6BPw9Qhgiu23xaCitpjSNjagnpXx9r0_3gBQMpwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034915181</pqid></control><display><type>article</type><title>Bone ingrowth simulation for a concept glenoid component design</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Andreykiv, A. ; Prendergast, P.J. ; van Keulen, F. ; Swieszkowski, W. ; Rozing, P.M.</creator><creatorcontrib>Andreykiv, A. ; Prendergast, P.J. ; van Keulen, F. ; Swieszkowski, W. ; Rozing, P.M.</creatorcontrib><description>Glenoid component loosening is the major problem of total shoulder arthroplasty. It is possible that uncemented component may be able to achieve superior fixation relative to cemented component. One option for uncemented glenoid is to use porous tantalum backing. Bone ingrowth into the porous backing requires a degree of stability to be achieved directly post-operatively. This paper investigates the feasibility of bone ingrowth with respect to the influence of primary fixation, elastic properties of the backing and friction at the bone prosthesis interface. Finite element models of three glenoid components with different primary fixation configurations are created. Bone ingrowth into the porous backing is modelled based on the magnitude of the relative interface micromotions and mechanoregulation of the mesenchymal stem cells that migrated via the bonded part of the interface. Primary fixation had the most influence on bone ingrowth. The simulation showed that its major role was not to firmly interlock the prosthesis, but rather provide such a distribution of load, that would result in reduction of the peak interface micromotions. Should primary fixation be provided, friction has a secondary importance with respect to bone ingrowth while the influence of stiffness was counter intuitive: a less stiff backing material inhibits bone ingrowth by higher interface micromotions and stimulation of fibrous tissue formation within the backing.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2004.05.044</identifier><identifier>PMID: 15797584</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Bone ingrowth ; Bone–implant interface ; Cell Differentiation - physiology ; Cell Movement - physiology ; Coated Materials, Biocompatible - chemistry ; Computer Simulation ; Computer-Aided Design ; Elasticity ; Equipment Failure Analysis - methods ; Feasibility Studies ; Friction ; Glenoid prosthesis ; Hedrocel ; Humans ; Joint Prosthesis ; Joint replacement surgery ; Materials Testing ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - physiology ; Models, Biological ; Osseointegration - physiology ; Osteoblasts - cytology ; Osteoblasts - physiology ; Osteogenesis - physiology ; Permeability ; Polyethylene ; Porosity ; Prosthesis Design - methods ; Shoulder ; Shoulder Joint - physiopathology ; Shoulder Joint - surgery ; Simulation ; Stress, Mechanical ; Tantalum - chemistry ; Tissue differentiation</subject><ispartof>Journal of biomechanics, 2005-05, Vol.38 (5), p.1023-1033</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-90c675d7e6ee365437ca9b8ff6044977ad51d5d4017e6210402fb2b18dbbe1cc3</citedby><cites>FETCH-LOGICAL-c491t-90c675d7e6ee365437ca9b8ff6044977ad51d5d4017e6210402fb2b18dbbe1cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021929004002878$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15797584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andreykiv, A.</creatorcontrib><creatorcontrib>Prendergast, P.J.</creatorcontrib><creatorcontrib>van Keulen, F.</creatorcontrib><creatorcontrib>Swieszkowski, W.</creatorcontrib><creatorcontrib>Rozing, P.M.</creatorcontrib><title>Bone ingrowth simulation for a concept glenoid component design</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Glenoid component loosening is the major problem of total shoulder arthroplasty. It is possible that uncemented component may be able to achieve superior fixation relative to cemented component. One option for uncemented glenoid is to use porous tantalum backing. Bone ingrowth into the porous backing requires a degree of stability to be achieved directly post-operatively. This paper investigates the feasibility of bone ingrowth with respect to the influence of primary fixation, elastic properties of the backing and friction at the bone prosthesis interface. Finite element models of three glenoid components with different primary fixation configurations are created. Bone ingrowth into the porous backing is modelled based on the magnitude of the relative interface micromotions and mechanoregulation of the mesenchymal stem cells that migrated via the bonded part of the interface. Primary fixation had the most influence on bone ingrowth. The simulation showed that its major role was not to firmly interlock the prosthesis, but rather provide such a distribution of load, that would result in reduction of the peak interface micromotions. Should primary fixation be provided, friction has a secondary importance with respect to bone ingrowth while the influence of stiffness was counter intuitive: a less stiff backing material inhibits bone ingrowth by higher interface micromotions and stimulation of fibrous tissue formation within the backing.</description><subject>Bone ingrowth</subject><subject>Bone–implant interface</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Movement - physiology</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Computer Simulation</subject><subject>Computer-Aided Design</subject><subject>Elasticity</subject><subject>Equipment Failure Analysis - methods</subject><subject>Feasibility Studies</subject><subject>Friction</subject><subject>Glenoid prosthesis</subject><subject>Hedrocel</subject><subject>Humans</subject><subject>Joint Prosthesis</subject><subject>Joint replacement surgery</subject><subject>Materials Testing</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - physiology</subject><subject>Models, Biological</subject><subject>Osseointegration - physiology</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - physiology</subject><subject>Osteogenesis - physiology</subject><subject>Permeability</subject><subject>Polyethylene</subject><subject>Porosity</subject><subject>Prosthesis Design - methods</subject><subject>Shoulder</subject><subject>Shoulder Joint - physiopathology</subject><subject>Shoulder Joint - surgery</subject><subject>Simulation</subject><subject>Stress, Mechanical</subject><subject>Tantalum - chemistry</subject><subject>Tissue differentiation</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU9r3DAQxUVISLZpv8JiKORmZ2RJln3qnyVtAoFckrOwpfGujC1tJbuh3z5adkuhl5zEwO89zbxHyJpCQYFWt0MxdNZPqHdFCcALEAVwfkZWtJYsL1kN52QFUNK8KRu4Ih9iHABActlckisqZCNFzVfky3fvMLNuG_zrvMuinZaxna13We9D1mbaO437OduO6Lw1aZ72SeHmzGC0W_eRXPTtGPHT6b0mLz_unjf3-ePTz4fNt8dc84bOeQO6ksJIrBBZJTiTum26uu-rtHUjZWsENcJwoAkpKXAo-67saG26DqnW7JrcHH33wf9aMM5qslHjOLYO_RJVcq94zap3QSoZE5LTBH7-Dxz8Elw6QlFgaWtB6wNVHSkdfIwBe7UPdmrDnwSpQxNqUH-bUIcmFAiVbkrC9cl-6SY0_2Sn6BPw9Qhgiu23xaCitpjSNjagnpXx9r0_3gBQMpwg</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>Andreykiv, A.</creator><creator>Prendergast, P.J.</creator><creator>van Keulen, F.</creator><creator>Swieszkowski, W.</creator><creator>Rozing, P.M.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>200505</creationdate><title>Bone ingrowth simulation for a concept glenoid component design</title><author>Andreykiv, A. ; Prendergast, P.J. ; van Keulen, F. ; Swieszkowski, W. ; Rozing, P.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-90c675d7e6ee365437ca9b8ff6044977ad51d5d4017e6210402fb2b18dbbe1cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bone ingrowth</topic><topic>Bone–implant interface</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Movement - physiology</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Computer Simulation</topic><topic>Computer-Aided Design</topic><topic>Elasticity</topic><topic>Equipment Failure Analysis - methods</topic><topic>Feasibility Studies</topic><topic>Friction</topic><topic>Glenoid prosthesis</topic><topic>Hedrocel</topic><topic>Humans</topic><topic>Joint Prosthesis</topic><topic>Joint replacement surgery</topic><topic>Materials Testing</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - physiology</topic><topic>Models, Biological</topic><topic>Osseointegration - physiology</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - physiology</topic><topic>Osteogenesis - physiology</topic><topic>Permeability</topic><topic>Polyethylene</topic><topic>Porosity</topic><topic>Prosthesis Design - methods</topic><topic>Shoulder</topic><topic>Shoulder Joint - physiopathology</topic><topic>Shoulder Joint - surgery</topic><topic>Simulation</topic><topic>Stress, Mechanical</topic><topic>Tantalum - chemistry</topic><topic>Tissue differentiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreykiv, A.</creatorcontrib><creatorcontrib>Prendergast, P.J.</creatorcontrib><creatorcontrib>van Keulen, F.</creatorcontrib><creatorcontrib>Swieszkowski, W.</creatorcontrib><creatorcontrib>Rozing, P.M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreykiv, A.</au><au>Prendergast, P.J.</au><au>van Keulen, F.</au><au>Swieszkowski, W.</au><au>Rozing, P.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bone ingrowth simulation for a concept glenoid component design</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2005-05</date><risdate>2005</risdate><volume>38</volume><issue>5</issue><spage>1023</spage><epage>1033</epage><pages>1023-1033</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Glenoid component loosening is the major problem of total shoulder arthroplasty. It is possible that uncemented component may be able to achieve superior fixation relative to cemented component. One option for uncemented glenoid is to use porous tantalum backing. Bone ingrowth into the porous backing requires a degree of stability to be achieved directly post-operatively. This paper investigates the feasibility of bone ingrowth with respect to the influence of primary fixation, elastic properties of the backing and friction at the bone prosthesis interface. Finite element models of three glenoid components with different primary fixation configurations are created. Bone ingrowth into the porous backing is modelled based on the magnitude of the relative interface micromotions and mechanoregulation of the mesenchymal stem cells that migrated via the bonded part of the interface. Primary fixation had the most influence on bone ingrowth. The simulation showed that its major role was not to firmly interlock the prosthesis, but rather provide such a distribution of load, that would result in reduction of the peak interface micromotions. Should primary fixation be provided, friction has a secondary importance with respect to bone ingrowth while the influence of stiffness was counter intuitive: a less stiff backing material inhibits bone ingrowth by higher interface micromotions and stimulation of fibrous tissue formation within the backing.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>15797584</pmid><doi>10.1016/j.jbiomech.2004.05.044</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2005-05, Vol.38 (5), p.1023-1033
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_67564836
source MEDLINE; Elsevier ScienceDirect Journals
subjects Bone ingrowth
Bone–implant interface
Cell Differentiation - physiology
Cell Movement - physiology
Coated Materials, Biocompatible - chemistry
Computer Simulation
Computer-Aided Design
Elasticity
Equipment Failure Analysis - methods
Feasibility Studies
Friction
Glenoid prosthesis
Hedrocel
Humans
Joint Prosthesis
Joint replacement surgery
Materials Testing
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - physiology
Models, Biological
Osseointegration - physiology
Osteoblasts - cytology
Osteoblasts - physiology
Osteogenesis - physiology
Permeability
Polyethylene
Porosity
Prosthesis Design - methods
Shoulder
Shoulder Joint - physiopathology
Shoulder Joint - surgery
Simulation
Stress, Mechanical
Tantalum - chemistry
Tissue differentiation
title Bone ingrowth simulation for a concept glenoid component design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bone%20ingrowth%20simulation%20for%20a%20concept%20glenoid%20component%20design&rft.jtitle=Journal%20of%20biomechanics&rft.au=Andreykiv,%20A.&rft.date=2005-05&rft.volume=38&rft.issue=5&rft.spage=1023&rft.epage=1033&rft.pages=1023-1033&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2004.05.044&rft_dat=%3Cproquest_cross%3E67564836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034915181&rft_id=info:pmid/15797584&rft_els_id=S0021929004002878&rfr_iscdi=true