Strain-rate dependent material properties of the porcine and human kidney capsule
This study was performed to characterize the mechanical properties of the kidney capsular membrane at strain-rates associated with blunt abdominal trauma. Uniaxial quasi-static and dynamic tensile experiments were performed on fresh, unfrozen porcine and human renal capsules at deformation rates ran...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2005-05, Vol.38 (5), p.1011-1021 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1021 |
---|---|
container_issue | 5 |
container_start_page | 1011 |
container_title | Journal of biomechanics |
container_volume | 38 |
creator | Snedeker, J.G. Niederer, P. Schmidlin, F.R. Farshad, M. Demetropoulos, C.K. Lee, J.B. Yang, K.H. |
description | This study was performed to characterize the mechanical properties of the kidney capsular membrane at strain-rates associated with blunt abdominal trauma. Uniaxial quasi-static and dynamic tensile experiments were performed on fresh, unfrozen porcine and human renal capsules at deformation rates ranging from 0.0001 to 7m/s (strain-rates of 0.005–250s−1). Single stroke, dynamic tests were performed on samples of porcine renal capsule at strain-rates of 0.005s−1 (n=33), 0.05s−1 (n=17), 0.5s−1 (n=38), 2s−1 (n=10), 4s−1 (n=10), 50s−1 (n=21), 100s−1 (n=18), 150s−1 (n=17), 200s−1 (n=10), and 250s−1 (n=17). Due to limited availability of human tissues, only quasi-static tests were performed (0.005s−1, n=25). Porcine renal capsule properties were found to match the material properties of human capsular tissue sufficiently well such that porcine tissue material can be used as a human test surrogate. The apparent elastic modulus and breaking stress of the porcine renal capsule were observed to increase significantly with increasing strain-rate (P |
doi_str_mv | 10.1016/j.jbiomech.2004.05.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67563704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192900400288X</els_id><sourcerecordid>67563704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-45e08898aef675335846e67080a3c6c1c7ab1bc15317dc69d6d51fc9107cc62c3</originalsourceid><addsrcrecordid>eNqFkc1q3DAURkVpaKZpXyEICt3ZvZIsyd61hPQHAiUkXQuNdM3ItWVXsgt5-2qYKYVusroIzvfpSoeQawY1A6Y-DPWwD_OE7lBzgKYGWYNQL8iOtVpUXLTwkuwAOKs63sEleZ3zAAC60d0rcsmk7rRsxY7cP6zJhlgluyL1uGD0GFc6lWMKdqRLmhdMa8BM556uB6TLnFyISG309LBNNtKfwUd8os4ueRvxDbno7Zjx7XlekR-fbx9vvlZ33798u_l0V7mGy7VqJELbdq3FXmkphGwbhUpDC1Y45ZjTds_2jknBtHeq88pL1ruOgXZOcSeuyPtTb1nx14Z5NVPIDsfRRpy3bEqrEhqaZ0GmBVdSHMF3_4HDvKVYHmEYCMkY560qlDpRLs05J-zNksJk01OBzNGNGcxfN-boxoA0xU0JXp_rt_2E_l_sLKMAH08Alm_7HTCZ7AJGhz4kdKvxc3jujj_tpqJy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035112286</pqid></control><display><type>article</type><title>Strain-rate dependent material properties of the porcine and human kidney capsule</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Snedeker, J.G. ; Niederer, P. ; Schmidlin, F.R. ; Farshad, M. ; Demetropoulos, C.K. ; Lee, J.B. ; Yang, K.H.</creator><creatorcontrib>Snedeker, J.G. ; Niederer, P. ; Schmidlin, F.R. ; Farshad, M. ; Demetropoulos, C.K. ; Lee, J.B. ; Yang, K.H.</creatorcontrib><description>This study was performed to characterize the mechanical properties of the kidney capsular membrane at strain-rates associated with blunt abdominal trauma. Uniaxial quasi-static and dynamic tensile experiments were performed on fresh, unfrozen porcine and human renal capsules at deformation rates ranging from 0.0001 to 7m/s (strain-rates of 0.005–250s−1). Single stroke, dynamic tests were performed on samples of porcine renal capsule at strain-rates of 0.005s−1 (n=33), 0.05s−1 (n=17), 0.5s−1 (n=38), 2s−1 (n=10), 4s−1 (n=10), 50s−1 (n=21), 100s−1 (n=18), 150s−1 (n=17), 200s−1 (n=10), and 250s−1 (n=17). Due to limited availability of human tissues, only quasi-static tests were performed (0.005s−1, n=25). Porcine renal capsule properties were found to match the material properties of human capsular tissue sufficiently well such that porcine tissue material can be used as a human test surrogate. The apparent elastic modulus and breaking stress of the porcine renal capsule were observed to increase significantly with increasing strain-rate (P<0.01). Breaking strain was inversely related to strain-rate (P<0.01). The effect of increasing strain-rate on material properties diminished appreciably at rates exceeding 150s−1. Empirically derived mathematical models of constitutive behavior were developed using a hyperelastic/viscoelastic Ogden formulation, as well as a Cowper–Symonds law material curve multiplication.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2004.05.036</identifier><identifier>PMID: 15797583</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Animals ; Capsular membrane ; Computer Simulation ; Elasticity ; Failure ; Humans ; Impact ; In Vitro Techniques ; Kidney ; Kidney - physiology ; Membranes - physiology ; Models, Biological ; Species Specificity ; Stress, Mechanical ; Swine ; Tensile Strength - physiology ; Viscosity</subject><ispartof>Journal of biomechanics, 2005-05, Vol.38 (5), p.1011-1021</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-45e08898aef675335846e67080a3c6c1c7ab1bc15317dc69d6d51fc9107cc62c3</citedby><cites>FETCH-LOGICAL-c425t-45e08898aef675335846e67080a3c6c1c7ab1bc15317dc69d6d51fc9107cc62c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002192900400288X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15797583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Snedeker, J.G.</creatorcontrib><creatorcontrib>Niederer, P.</creatorcontrib><creatorcontrib>Schmidlin, F.R.</creatorcontrib><creatorcontrib>Farshad, M.</creatorcontrib><creatorcontrib>Demetropoulos, C.K.</creatorcontrib><creatorcontrib>Lee, J.B.</creatorcontrib><creatorcontrib>Yang, K.H.</creatorcontrib><title>Strain-rate dependent material properties of the porcine and human kidney capsule</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>This study was performed to characterize the mechanical properties of the kidney capsular membrane at strain-rates associated with blunt abdominal trauma. Uniaxial quasi-static and dynamic tensile experiments were performed on fresh, unfrozen porcine and human renal capsules at deformation rates ranging from 0.0001 to 7m/s (strain-rates of 0.005–250s−1). Single stroke, dynamic tests were performed on samples of porcine renal capsule at strain-rates of 0.005s−1 (n=33), 0.05s−1 (n=17), 0.5s−1 (n=38), 2s−1 (n=10), 4s−1 (n=10), 50s−1 (n=21), 100s−1 (n=18), 150s−1 (n=17), 200s−1 (n=10), and 250s−1 (n=17). Due to limited availability of human tissues, only quasi-static tests were performed (0.005s−1, n=25). Porcine renal capsule properties were found to match the material properties of human capsular tissue sufficiently well such that porcine tissue material can be used as a human test surrogate. The apparent elastic modulus and breaking stress of the porcine renal capsule were observed to increase significantly with increasing strain-rate (P<0.01). Breaking strain was inversely related to strain-rate (P<0.01). The effect of increasing strain-rate on material properties diminished appreciably at rates exceeding 150s−1. Empirically derived mathematical models of constitutive behavior were developed using a hyperelastic/viscoelastic Ogden formulation, as well as a Cowper–Symonds law material curve multiplication.</description><subject>Animals</subject><subject>Capsular membrane</subject><subject>Computer Simulation</subject><subject>Elasticity</subject><subject>Failure</subject><subject>Humans</subject><subject>Impact</subject><subject>In Vitro Techniques</subject><subject>Kidney</subject><subject>Kidney - physiology</subject><subject>Membranes - physiology</subject><subject>Models, Biological</subject><subject>Species Specificity</subject><subject>Stress, Mechanical</subject><subject>Swine</subject><subject>Tensile Strength - physiology</subject><subject>Viscosity</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc1q3DAURkVpaKZpXyEICt3ZvZIsyd61hPQHAiUkXQuNdM3ItWVXsgt5-2qYKYVusroIzvfpSoeQawY1A6Y-DPWwD_OE7lBzgKYGWYNQL8iOtVpUXLTwkuwAOKs63sEleZ3zAAC60d0rcsmk7rRsxY7cP6zJhlgluyL1uGD0GFc6lWMKdqRLmhdMa8BM556uB6TLnFyISG309LBNNtKfwUd8os4ueRvxDbno7Zjx7XlekR-fbx9vvlZ33798u_l0V7mGy7VqJELbdq3FXmkphGwbhUpDC1Y45ZjTds_2jknBtHeq88pL1ruOgXZOcSeuyPtTb1nx14Z5NVPIDsfRRpy3bEqrEhqaZ0GmBVdSHMF3_4HDvKVYHmEYCMkY560qlDpRLs05J-zNksJk01OBzNGNGcxfN-boxoA0xU0JXp_rt_2E_l_sLKMAH08Alm_7HTCZ7AJGhz4kdKvxc3jujj_tpqJy</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>Snedeker, J.G.</creator><creator>Niederer, P.</creator><creator>Schmidlin, F.R.</creator><creator>Farshad, M.</creator><creator>Demetropoulos, C.K.</creator><creator>Lee, J.B.</creator><creator>Yang, K.H.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QO</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200505</creationdate><title>Strain-rate dependent material properties of the porcine and human kidney capsule</title><author>Snedeker, J.G. ; Niederer, P. ; Schmidlin, F.R. ; Farshad, M. ; Demetropoulos, C.K. ; Lee, J.B. ; Yang, K.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-45e08898aef675335846e67080a3c6c1c7ab1bc15317dc69d6d51fc9107cc62c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Capsular membrane</topic><topic>Computer Simulation</topic><topic>Elasticity</topic><topic>Failure</topic><topic>Humans</topic><topic>Impact</topic><topic>In Vitro Techniques</topic><topic>Kidney</topic><topic>Kidney - physiology</topic><topic>Membranes - physiology</topic><topic>Models, Biological</topic><topic>Species Specificity</topic><topic>Stress, Mechanical</topic><topic>Swine</topic><topic>Tensile Strength - physiology</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snedeker, J.G.</creatorcontrib><creatorcontrib>Niederer, P.</creatorcontrib><creatorcontrib>Schmidlin, F.R.</creatorcontrib><creatorcontrib>Farshad, M.</creatorcontrib><creatorcontrib>Demetropoulos, C.K.</creatorcontrib><creatorcontrib>Lee, J.B.</creatorcontrib><creatorcontrib>Yang, K.H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snedeker, J.G.</au><au>Niederer, P.</au><au>Schmidlin, F.R.</au><au>Farshad, M.</au><au>Demetropoulos, C.K.</au><au>Lee, J.B.</au><au>Yang, K.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain-rate dependent material properties of the porcine and human kidney capsule</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2005-05</date><risdate>2005</risdate><volume>38</volume><issue>5</issue><spage>1011</spage><epage>1021</epage><pages>1011-1021</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>This study was performed to characterize the mechanical properties of the kidney capsular membrane at strain-rates associated with blunt abdominal trauma. Uniaxial quasi-static and dynamic tensile experiments were performed on fresh, unfrozen porcine and human renal capsules at deformation rates ranging from 0.0001 to 7m/s (strain-rates of 0.005–250s−1). Single stroke, dynamic tests were performed on samples of porcine renal capsule at strain-rates of 0.005s−1 (n=33), 0.05s−1 (n=17), 0.5s−1 (n=38), 2s−1 (n=10), 4s−1 (n=10), 50s−1 (n=21), 100s−1 (n=18), 150s−1 (n=17), 200s−1 (n=10), and 250s−1 (n=17). Due to limited availability of human tissues, only quasi-static tests were performed (0.005s−1, n=25). Porcine renal capsule properties were found to match the material properties of human capsular tissue sufficiently well such that porcine tissue material can be used as a human test surrogate. The apparent elastic modulus and breaking stress of the porcine renal capsule were observed to increase significantly with increasing strain-rate (P<0.01). Breaking strain was inversely related to strain-rate (P<0.01). The effect of increasing strain-rate on material properties diminished appreciably at rates exceeding 150s−1. Empirically derived mathematical models of constitutive behavior were developed using a hyperelastic/viscoelastic Ogden formulation, as well as a Cowper–Symonds law material curve multiplication.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>15797583</pmid><doi>10.1016/j.jbiomech.2004.05.036</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2005-05, Vol.38 (5), p.1011-1021 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_proquest_miscellaneous_67563704 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Capsular membrane Computer Simulation Elasticity Failure Humans Impact In Vitro Techniques Kidney Kidney - physiology Membranes - physiology Models, Biological Species Specificity Stress, Mechanical Swine Tensile Strength - physiology Viscosity |
title | Strain-rate dependent material properties of the porcine and human kidney capsule |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain-rate%20dependent%20material%20properties%20of%20the%20porcine%20and%20human%20kidney%20capsule&rft.jtitle=Journal%20of%20biomechanics&rft.au=Snedeker,%20J.G.&rft.date=2005-05&rft.volume=38&rft.issue=5&rft.spage=1011&rft.epage=1021&rft.pages=1011-1021&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2004.05.036&rft_dat=%3Cproquest_cross%3E67563704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035112286&rft_id=info:pmid/15797583&rft_els_id=S002192900400288X&rfr_iscdi=true |