Statistical criteria for the identification of protein active sites using theoretical microscopic titration curves

Theoretical Microscopic Titration Curves (THEMATICS) may be used to identify chemically important residues in active sites of enzymes by characteristic deviations from the normal, sigmoidal Henderson–Hasselbalch titration behavior. Clusters of such deviant residues in physical proximity constitute r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2005-05, Vol.59 (2), p.183-195
Hauptverfasser: Ko, Jaeju, Murga, Leonel F., André, Pierrette, Yang, Huyuan, Ondrechen, Mary Jo, Williams, Ronald J., Agunwamba, Akochi, Budil, David E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue 2
container_start_page 183
container_title Proteins, structure, function, and bioinformatics
container_volume 59
creator Ko, Jaeju
Murga, Leonel F.
André, Pierrette
Yang, Huyuan
Ondrechen, Mary Jo
Williams, Ronald J.
Agunwamba, Akochi
Budil, David E.
description Theoretical Microscopic Titration Curves (THEMATICS) may be used to identify chemically important residues in active sites of enzymes by characteristic deviations from the normal, sigmoidal Henderson–Hasselbalch titration behavior. Clusters of such deviant residues in physical proximity constitute reliable predictors of the location of the active site. Originally the residues with deviant predicted behavior were identified by human observation of the computed titration curves. However, it is preferable to select the unusual residues by mathematically well‐defined criteria, in order to reduce the chance of error, eliminate any possible biases, and substantially speed up the selection process. Here we present some simple statistical tests that constitute such selection criteria. The first derivatives of the predicted titration curves resemble distribution functions and are normalized. The moments of these first derivative functions are computed. It is shown that the third and fourth moments, measures of asymmetry and kurtosis, respectively, are good measures of the deviations from normal behavior. Results are presented for 44 different enzymes. Detailed results are given for 4 enzymes with 4 different types of chemistry: arginine kinase from Limulus polyphemus (horseshoe crab); β‐lactamase from Escherichia coli; glutamate racemase from Aquifex pyrophilus; and 3‐isopropylmalate dehydrogenase from Thiobacillus ferrooxidans. The relationship between the statistical measures of nonsigmoidal behavior in the predicted titration curves and the catalytic activity of the residue is discussed. Proteins 2005. © 2005 Wiley‐Liss, Inc.
doi_str_mv 10.1002/prot.20418
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67563670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67563670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3968-ae6b786967fbe4d79b1d7a40c478b13efd6318e4b9cdfccd27e74e78c9ea645e3</originalsourceid><addsrcrecordid>eNqFkc1O3DAUha2qVRloNzwA8qoLpEztceKfZTvAFGkEqAzq0nKcGzBkksF2-Hn7OmSAXbvywt937HsPQvuUTCkhs-8b38XpjORUfkATSpTICGX5RzQhUoqMFbLYQbsh3BJCuGL8M9qhhWAqGRPkL6OJLkRnTYOtdxG8M7juPI43gF0FbXR1uoyua3FX4-EtcC02NroHwCEJAffBtdeD0HkYk9bO-i7YbuMsji760be9f4DwBX2qTRPg6_bcQ1cnx6v5r2x5vjid_1hmlikuMwO8FJIrLuoS8kqoklbC5MTmQpaUQV1xRiXkpbJVbW01EyByENIqMDwvgO2hb2Nu-vN9DyHqtQsWmsa00PVBc1FwxgX5L0iV4IwUMoGHIzgMFzzUeuPd2vhnTYkeqtDDevRLFQk-2Kb25Rqqd3S7-wTQEXh0DTz_I0pf_D5fvYZmo5Mqg6c3x_i7NA4Thf5zttCz5cXiZ8GONGF_Aa0npu0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19763058</pqid></control><display><type>article</type><title>Statistical criteria for the identification of protein active sites using theoretical microscopic titration curves</title><source>MEDLINE</source><source>Wiley Online Library (Online service)</source><creator>Ko, Jaeju ; Murga, Leonel F. ; André, Pierrette ; Yang, Huyuan ; Ondrechen, Mary Jo ; Williams, Ronald J. ; Agunwamba, Akochi ; Budil, David E.</creator><creatorcontrib>Ko, Jaeju ; Murga, Leonel F. ; André, Pierrette ; Yang, Huyuan ; Ondrechen, Mary Jo ; Williams, Ronald J. ; Agunwamba, Akochi ; Budil, David E.</creatorcontrib><description>Theoretical Microscopic Titration Curves (THEMATICS) may be used to identify chemically important residues in active sites of enzymes by characteristic deviations from the normal, sigmoidal Henderson–Hasselbalch titration behavior. Clusters of such deviant residues in physical proximity constitute reliable predictors of the location of the active site. Originally the residues with deviant predicted behavior were identified by human observation of the computed titration curves. However, it is preferable to select the unusual residues by mathematically well‐defined criteria, in order to reduce the chance of error, eliminate any possible biases, and substantially speed up the selection process. Here we present some simple statistical tests that constitute such selection criteria. The first derivatives of the predicted titration curves resemble distribution functions and are normalized. The moments of these first derivative functions are computed. It is shown that the third and fourth moments, measures of asymmetry and kurtosis, respectively, are good measures of the deviations from normal behavior. Results are presented for 44 different enzymes. Detailed results are given for 4 enzymes with 4 different types of chemistry: arginine kinase from Limulus polyphemus (horseshoe crab); β‐lactamase from Escherichia coli; glutamate racemase from Aquifex pyrophilus; and 3‐isopropylmalate dehydrogenase from Thiobacillus ferrooxidans. The relationship between the statistical measures of nonsigmoidal behavior in the predicted titration curves and the catalytic activity of the residue is discussed. Proteins 2005. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.20418</identifier><identifier>PMID: 15739204</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Amino Acid Isomerases - chemistry ; Amino Acid Isomerases - metabolism ; Animals ; Aquifex pyrophilus ; Arginine Kinase - chemistry ; Arginine Kinase - metabolism ; Bacteria - enzymology ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; beta-Lactamases - chemistry ; beta-Lactamases - metabolism ; Binding Sites ; Catalysis ; Decapoda ; enzyme function ; Enzymes - chemistry ; Enzymes - metabolism ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; functional genomics ; Horseshoe Crabs ; Kinetics ; Limulus polyphemus ; Microscopy - methods ; Models, Statistical ; THEMATICS ; Thiobacillus ; titration</subject><ispartof>Proteins, structure, function, and bioinformatics, 2005-05, Vol.59 (2), p.183-195</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3968-ae6b786967fbe4d79b1d7a40c478b13efd6318e4b9cdfccd27e74e78c9ea645e3</citedby><cites>FETCH-LOGICAL-c3968-ae6b786967fbe4d79b1d7a40c478b13efd6318e4b9cdfccd27e74e78c9ea645e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.20418$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.20418$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15739204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ko, Jaeju</creatorcontrib><creatorcontrib>Murga, Leonel F.</creatorcontrib><creatorcontrib>André, Pierrette</creatorcontrib><creatorcontrib>Yang, Huyuan</creatorcontrib><creatorcontrib>Ondrechen, Mary Jo</creatorcontrib><creatorcontrib>Williams, Ronald J.</creatorcontrib><creatorcontrib>Agunwamba, Akochi</creatorcontrib><creatorcontrib>Budil, David E.</creatorcontrib><title>Statistical criteria for the identification of protein active sites using theoretical microscopic titration curves</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>Theoretical Microscopic Titration Curves (THEMATICS) may be used to identify chemically important residues in active sites of enzymes by characteristic deviations from the normal, sigmoidal Henderson–Hasselbalch titration behavior. Clusters of such deviant residues in physical proximity constitute reliable predictors of the location of the active site. Originally the residues with deviant predicted behavior were identified by human observation of the computed titration curves. However, it is preferable to select the unusual residues by mathematically well‐defined criteria, in order to reduce the chance of error, eliminate any possible biases, and substantially speed up the selection process. Here we present some simple statistical tests that constitute such selection criteria. The first derivatives of the predicted titration curves resemble distribution functions and are normalized. The moments of these first derivative functions are computed. It is shown that the third and fourth moments, measures of asymmetry and kurtosis, respectively, are good measures of the deviations from normal behavior. Results are presented for 44 different enzymes. Detailed results are given for 4 enzymes with 4 different types of chemistry: arginine kinase from Limulus polyphemus (horseshoe crab); β‐lactamase from Escherichia coli; glutamate racemase from Aquifex pyrophilus; and 3‐isopropylmalate dehydrogenase from Thiobacillus ferrooxidans. The relationship between the statistical measures of nonsigmoidal behavior in the predicted titration curves and the catalytic activity of the residue is discussed. Proteins 2005. © 2005 Wiley‐Liss, Inc.</description><subject>Amino Acid Isomerases - chemistry</subject><subject>Amino Acid Isomerases - metabolism</subject><subject>Animals</subject><subject>Aquifex pyrophilus</subject><subject>Arginine Kinase - chemistry</subject><subject>Arginine Kinase - metabolism</subject><subject>Bacteria - enzymology</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>beta-Lactamases - chemistry</subject><subject>beta-Lactamases - metabolism</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>Decapoda</subject><subject>enzyme function</subject><subject>Enzymes - chemistry</subject><subject>Enzymes - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>functional genomics</subject><subject>Horseshoe Crabs</subject><subject>Kinetics</subject><subject>Limulus polyphemus</subject><subject>Microscopy - methods</subject><subject>Models, Statistical</subject><subject>THEMATICS</subject><subject>Thiobacillus</subject><subject>titration</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1O3DAUha2qVRloNzwA8qoLpEztceKfZTvAFGkEqAzq0nKcGzBkksF2-Hn7OmSAXbvywt937HsPQvuUTCkhs-8b38XpjORUfkATSpTICGX5RzQhUoqMFbLYQbsh3BJCuGL8M9qhhWAqGRPkL6OJLkRnTYOtdxG8M7juPI43gF0FbXR1uoyua3FX4-EtcC02NroHwCEJAffBtdeD0HkYk9bO-i7YbuMsji760be9f4DwBX2qTRPg6_bcQ1cnx6v5r2x5vjid_1hmlikuMwO8FJIrLuoS8kqoklbC5MTmQpaUQV1xRiXkpbJVbW01EyByENIqMDwvgO2hb2Nu-vN9DyHqtQsWmsa00PVBc1FwxgX5L0iV4IwUMoGHIzgMFzzUeuPd2vhnTYkeqtDDevRLFQk-2Kb25Rqqd3S7-wTQEXh0DTz_I0pf_D5fvYZmo5Mqg6c3x_i7NA4Thf5zttCz5cXiZ8GONGF_Aa0npu0</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Ko, Jaeju</creator><creator>Murga, Leonel F.</creator><creator>André, Pierrette</creator><creator>Yang, Huyuan</creator><creator>Ondrechen, Mary Jo</creator><creator>Williams, Ronald J.</creator><creator>Agunwamba, Akochi</creator><creator>Budil, David E.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20050501</creationdate><title>Statistical criteria for the identification of protein active sites using theoretical microscopic titration curves</title><author>Ko, Jaeju ; Murga, Leonel F. ; André, Pierrette ; Yang, Huyuan ; Ondrechen, Mary Jo ; Williams, Ronald J. ; Agunwamba, Akochi ; Budil, David E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3968-ae6b786967fbe4d79b1d7a40c478b13efd6318e4b9cdfccd27e74e78c9ea645e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Isomerases - chemistry</topic><topic>Amino Acid Isomerases - metabolism</topic><topic>Animals</topic><topic>Aquifex pyrophilus</topic><topic>Arginine Kinase - chemistry</topic><topic>Arginine Kinase - metabolism</topic><topic>Bacteria - enzymology</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>beta-Lactamases - chemistry</topic><topic>beta-Lactamases - metabolism</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>Decapoda</topic><topic>enzyme function</topic><topic>Enzymes - chemistry</topic><topic>Enzymes - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>functional genomics</topic><topic>Horseshoe Crabs</topic><topic>Kinetics</topic><topic>Limulus polyphemus</topic><topic>Microscopy - methods</topic><topic>Models, Statistical</topic><topic>THEMATICS</topic><topic>Thiobacillus</topic><topic>titration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Jaeju</creatorcontrib><creatorcontrib>Murga, Leonel F.</creatorcontrib><creatorcontrib>André, Pierrette</creatorcontrib><creatorcontrib>Yang, Huyuan</creatorcontrib><creatorcontrib>Ondrechen, Mary Jo</creatorcontrib><creatorcontrib>Williams, Ronald J.</creatorcontrib><creatorcontrib>Agunwamba, Akochi</creatorcontrib><creatorcontrib>Budil, David E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Jaeju</au><au>Murga, Leonel F.</au><au>André, Pierrette</au><au>Yang, Huyuan</au><au>Ondrechen, Mary Jo</au><au>Williams, Ronald J.</au><au>Agunwamba, Akochi</au><au>Budil, David E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical criteria for the identification of protein active sites using theoretical microscopic titration curves</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>59</volume><issue>2</issue><spage>183</spage><epage>195</epage><pages>183-195</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>Theoretical Microscopic Titration Curves (THEMATICS) may be used to identify chemically important residues in active sites of enzymes by characteristic deviations from the normal, sigmoidal Henderson–Hasselbalch titration behavior. Clusters of such deviant residues in physical proximity constitute reliable predictors of the location of the active site. Originally the residues with deviant predicted behavior were identified by human observation of the computed titration curves. However, it is preferable to select the unusual residues by mathematically well‐defined criteria, in order to reduce the chance of error, eliminate any possible biases, and substantially speed up the selection process. Here we present some simple statistical tests that constitute such selection criteria. The first derivatives of the predicted titration curves resemble distribution functions and are normalized. The moments of these first derivative functions are computed. It is shown that the third and fourth moments, measures of asymmetry and kurtosis, respectively, are good measures of the deviations from normal behavior. Results are presented for 44 different enzymes. Detailed results are given for 4 enzymes with 4 different types of chemistry: arginine kinase from Limulus polyphemus (horseshoe crab); β‐lactamase from Escherichia coli; glutamate racemase from Aquifex pyrophilus; and 3‐isopropylmalate dehydrogenase from Thiobacillus ferrooxidans. The relationship between the statistical measures of nonsigmoidal behavior in the predicted titration curves and the catalytic activity of the residue is discussed. Proteins 2005. © 2005 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15739204</pmid><doi>10.1002/prot.20418</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2005-05, Vol.59 (2), p.183-195
issn 0887-3585
1097-0134
language eng
recordid cdi_proquest_miscellaneous_67563670
source MEDLINE; Wiley Online Library (Online service)
subjects Amino Acid Isomerases - chemistry
Amino Acid Isomerases - metabolism
Animals
Aquifex pyrophilus
Arginine Kinase - chemistry
Arginine Kinase - metabolism
Bacteria - enzymology
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
beta-Lactamases - chemistry
beta-Lactamases - metabolism
Binding Sites
Catalysis
Decapoda
enzyme function
Enzymes - chemistry
Enzymes - metabolism
Escherichia coli
Escherichia coli - enzymology
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - metabolism
functional genomics
Horseshoe Crabs
Kinetics
Limulus polyphemus
Microscopy - methods
Models, Statistical
THEMATICS
Thiobacillus
titration
title Statistical criteria for the identification of protein active sites using theoretical microscopic titration curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20criteria%20for%20the%20identification%20of%20protein%20active%20sites%20using%20theoretical%20microscopic%20titration%20curves&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Ko,%20Jaeju&rft.date=2005-05-01&rft.volume=59&rft.issue=2&rft.spage=183&rft.epage=195&rft.pages=183-195&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.20418&rft_dat=%3Cproquest_cross%3E67563670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19763058&rft_id=info:pmid/15739204&rfr_iscdi=true