Small proportions: what to report for confidence intervals?

Purpose It is generally agreed that a confidence interval (CI) is usually more informative than a point estimate or p‐value, but we rarely encounter small proportions with CI in the pharmacoepidemiological literature. When a CI is given it is sporadically reported, how it was calculated. This incorr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacoepidemiology and drug safety 2005-04, Vol.14 (4), p.239-247
Hauptverfasser: Tobi, Hilde, van den Berg, Paul B., de Jong-van den Berg, Lolkje TW
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 247
container_issue 4
container_start_page 239
container_title Pharmacoepidemiology and drug safety
container_volume 14
creator Tobi, Hilde
van den Berg, Paul B.
de Jong-van den Berg, Lolkje TW
description Purpose It is generally agreed that a confidence interval (CI) is usually more informative than a point estimate or p‐value, but we rarely encounter small proportions with CI in the pharmacoepidemiological literature. When a CI is given it is sporadically reported, how it was calculated. This incorrectly suggests one single method to calculate CIs. To identify the method best suited for small proportions, seven approximate methods and the Clopper–Pearson Exact method to calculate CIs were compared. Methods In a simulation study for 90‐, 95‐ and 99%CIs, with sample size 1000 and proportions ranging from 0.001 to 0.01, were evaluated systematically. Main quality criteria were coverage and interval width. The methods are illustrated using data from pharmacoepidemiology studies. Results Simulations showed that standard Wald methods have insufficient coverage probability regardless of how the desired coverage is perceived. Overall, the Exact method and the Score method with continuity correction (CC) performed best. Real life examples showed the methods to yield different results too. Conclusions For CIs for small proportions (π ≤ 0.01), the use of the Exact method and the Score method with CC are advocated based on this study. Copyright © 2005 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/pds.1081
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67557348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67557348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-96e1c1784f837566111f2a29bd16185595bc47a7824ce919365351224be4eaba3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EoqUg8QUoK8QmEMeP2LBAqECLqHgVxNJyHEcEkjjYKaV_j6NGsGI1o5mjO3cuAPswOoZRFJ80mfMNgxtgCCPOQ0hIstn1BIWMUD4AO869R5HfcbwNBpAkkCOCh-BsXsmyDBprGmPbwtTuNFi-yTZoTWB1NwtyYwNl6rzIdK10UNSttl-ydOe7YCv3Ve_1dQRerq-ex9Nwdj-5GV_MQoX8nZBTDRVMGM4ZSgilEMI8ljFPM0ghI4STVOFEJizGSnPvixJEYBzjVGMtU4lG4HCt611-LrRrRVU4pctS1tosnKCJfxdh5sGjNaiscc7qXDS2qKRdCRiJLijhgxJdUB496DUXaaWzP7BPxgPhGlgWpV79KyQeLue9YM8XrtXfv7y0H96f_1u83k3EI-NPs-ktEhT9AHF5fyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67557348</pqid></control><display><type>article</type><title>Small proportions: what to report for confidence intervals?</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tobi, Hilde ; van den Berg, Paul B. ; de Jong-van den Berg, Lolkje TW</creator><creatorcontrib>Tobi, Hilde ; van den Berg, Paul B. ; de Jong-van den Berg, Lolkje TW</creatorcontrib><description>Purpose It is generally agreed that a confidence interval (CI) is usually more informative than a point estimate or p‐value, but we rarely encounter small proportions with CI in the pharmacoepidemiological literature. When a CI is given it is sporadically reported, how it was calculated. This incorrectly suggests one single method to calculate CIs. To identify the method best suited for small proportions, seven approximate methods and the Clopper–Pearson Exact method to calculate CIs were compared. Methods In a simulation study for 90‐, 95‐ and 99%CIs, with sample size 1000 and proportions ranging from 0.001 to 0.01, were evaluated systematically. Main quality criteria were coverage and interval width. The methods are illustrated using data from pharmacoepidemiology studies. Results Simulations showed that standard Wald methods have insufficient coverage probability regardless of how the desired coverage is perceived. Overall, the Exact method and the Score method with continuity correction (CC) performed best. Real life examples showed the methods to yield different results too. Conclusions For CIs for small proportions (π ≤ 0.01), the use of the Exact method and the Score method with CC are advocated based on this study. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1053-8569</identifier><identifier>EISSN: 1099-1557</identifier><identifier>DOI: 10.1002/pds.1081</identifier><identifier>PMID: 15719354</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>binomial proportion ; Confidence Intervals ; Epidemiologic Factors ; Models, Statistical ; Sample Size ; simulation study</subject><ispartof>Pharmacoepidemiology and drug safety, 2005-04, Vol.14 (4), p.239-247</ispartof><rights>Copyright © 2005 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-96e1c1784f837566111f2a29bd16185595bc47a7824ce919365351224be4eaba3</citedby><cites>FETCH-LOGICAL-c3571-96e1c1784f837566111f2a29bd16185595bc47a7824ce919365351224be4eaba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpds.1081$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpds.1081$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15719354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tobi, Hilde</creatorcontrib><creatorcontrib>van den Berg, Paul B.</creatorcontrib><creatorcontrib>de Jong-van den Berg, Lolkje TW</creatorcontrib><title>Small proportions: what to report for confidence intervals?</title><title>Pharmacoepidemiology and drug safety</title><addtitle>Pharmacoepidem. Drug Safe</addtitle><description>Purpose It is generally agreed that a confidence interval (CI) is usually more informative than a point estimate or p‐value, but we rarely encounter small proportions with CI in the pharmacoepidemiological literature. When a CI is given it is sporadically reported, how it was calculated. This incorrectly suggests one single method to calculate CIs. To identify the method best suited for small proportions, seven approximate methods and the Clopper–Pearson Exact method to calculate CIs were compared. Methods In a simulation study for 90‐, 95‐ and 99%CIs, with sample size 1000 and proportions ranging from 0.001 to 0.01, were evaluated systematically. Main quality criteria were coverage and interval width. The methods are illustrated using data from pharmacoepidemiology studies. Results Simulations showed that standard Wald methods have insufficient coverage probability regardless of how the desired coverage is perceived. Overall, the Exact method and the Score method with continuity correction (CC) performed best. Real life examples showed the methods to yield different results too. Conclusions For CIs for small proportions (π ≤ 0.01), the use of the Exact method and the Score method with CC are advocated based on this study. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><subject>binomial proportion</subject><subject>Confidence Intervals</subject><subject>Epidemiologic Factors</subject><subject>Models, Statistical</subject><subject>Sample Size</subject><subject>simulation study</subject><issn>1053-8569</issn><issn>1099-1557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtOwzAQRS0EoqUg8QUoK8QmEMeP2LBAqECLqHgVxNJyHEcEkjjYKaV_j6NGsGI1o5mjO3cuAPswOoZRFJ80mfMNgxtgCCPOQ0hIstn1BIWMUD4AO869R5HfcbwNBpAkkCOCh-BsXsmyDBprGmPbwtTuNFi-yTZoTWB1NwtyYwNl6rzIdK10UNSttl-ydOe7YCv3Ve_1dQRerq-ex9Nwdj-5GV_MQoX8nZBTDRVMGM4ZSgilEMI8ljFPM0ghI4STVOFEJizGSnPvixJEYBzjVGMtU4lG4HCt611-LrRrRVU4pctS1tosnKCJfxdh5sGjNaiscc7qXDS2qKRdCRiJLijhgxJdUB496DUXaaWzP7BPxgPhGlgWpV79KyQeLue9YM8XrtXfv7y0H96f_1u83k3EI-NPs-ktEhT9AHF5fyc</recordid><startdate>200504</startdate><enddate>200504</enddate><creator>Tobi, Hilde</creator><creator>van den Berg, Paul B.</creator><creator>de Jong-van den Berg, Lolkje TW</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200504</creationdate><title>Small proportions: what to report for confidence intervals?</title><author>Tobi, Hilde ; van den Berg, Paul B. ; de Jong-van den Berg, Lolkje TW</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-96e1c1784f837566111f2a29bd16185595bc47a7824ce919365351224be4eaba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>binomial proportion</topic><topic>Confidence Intervals</topic><topic>Epidemiologic Factors</topic><topic>Models, Statistical</topic><topic>Sample Size</topic><topic>simulation study</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tobi, Hilde</creatorcontrib><creatorcontrib>van den Berg, Paul B.</creatorcontrib><creatorcontrib>de Jong-van den Berg, Lolkje TW</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmacoepidemiology and drug safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tobi, Hilde</au><au>van den Berg, Paul B.</au><au>de Jong-van den Berg, Lolkje TW</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small proportions: what to report for confidence intervals?</atitle><jtitle>Pharmacoepidemiology and drug safety</jtitle><addtitle>Pharmacoepidem. Drug Safe</addtitle><date>2005-04</date><risdate>2005</risdate><volume>14</volume><issue>4</issue><spage>239</spage><epage>247</epage><pages>239-247</pages><issn>1053-8569</issn><eissn>1099-1557</eissn><abstract>Purpose It is generally agreed that a confidence interval (CI) is usually more informative than a point estimate or p‐value, but we rarely encounter small proportions with CI in the pharmacoepidemiological literature. When a CI is given it is sporadically reported, how it was calculated. This incorrectly suggests one single method to calculate CIs. To identify the method best suited for small proportions, seven approximate methods and the Clopper–Pearson Exact method to calculate CIs were compared. Methods In a simulation study for 90‐, 95‐ and 99%CIs, with sample size 1000 and proportions ranging from 0.001 to 0.01, were evaluated systematically. Main quality criteria were coverage and interval width. The methods are illustrated using data from pharmacoepidemiology studies. Results Simulations showed that standard Wald methods have insufficient coverage probability regardless of how the desired coverage is perceived. Overall, the Exact method and the Score method with continuity correction (CC) performed best. Real life examples showed the methods to yield different results too. Conclusions For CIs for small proportions (π ≤ 0.01), the use of the Exact method and the Score method with CC are advocated based on this study. Copyright © 2005 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>15719354</pmid><doi>10.1002/pds.1081</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8569
ispartof Pharmacoepidemiology and drug safety, 2005-04, Vol.14 (4), p.239-247
issn 1053-8569
1099-1557
language eng
recordid cdi_proquest_miscellaneous_67557348
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects binomial proportion
Confidence Intervals
Epidemiologic Factors
Models, Statistical
Sample Size
simulation study
title Small proportions: what to report for confidence intervals?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20proportions:%20what%20to%20report%20for%20confidence%20intervals?&rft.jtitle=Pharmacoepidemiology%20and%20drug%20safety&rft.au=Tobi,%20Hilde&rft.date=2005-04&rft.volume=14&rft.issue=4&rft.spage=239&rft.epage=247&rft.pages=239-247&rft.issn=1053-8569&rft.eissn=1099-1557&rft_id=info:doi/10.1002/pds.1081&rft_dat=%3Cproquest_cross%3E67557348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67557348&rft_id=info:pmid/15719354&rfr_iscdi=true