Alternative oxidase in animals: unique characteristics and taxonomic distribution

Alternative oxidase (AOX), a ubiquinol oxidase, introduces a branch point into the respiratory electron transport chain, bypassing complexes III and IV and resulting in cyanide-resistant respiration. Previously, AOX was thought to be limited to plants and some fungi and protists but recent work has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental biology 2009-08, Vol.212 (Pt 16), p.2627-2634
Hauptverfasser: McDonald, Allison E, Vanlerberghe, Greg C, Staples, James F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2634
container_issue Pt 16
container_start_page 2627
container_title Journal of experimental biology
container_volume 212
creator McDonald, Allison E
Vanlerberghe, Greg C
Staples, James F
description Alternative oxidase (AOX), a ubiquinol oxidase, introduces a branch point into the respiratory electron transport chain, bypassing complexes III and IV and resulting in cyanide-resistant respiration. Previously, AOX was thought to be limited to plants and some fungi and protists but recent work has demonstrated the presence of AOX in most kingdoms of life, including animals. In the present study we identified AOX in 28 animal species representing nine phyla. This expands the known taxonomic distribution of AOX in animals by 10 species and two phyla. Using bioinformatics we found AOX gene sequences in members of the animal phyla Porifera, Placozoa, Cnidaria, Mollusca, Annelida, Nematoda, Echinodermata, Hemichordata and Chordata. Using reverse-transcriptase polymerase chain reaction (RT-PCR) with degenerate primers designed to recognize conserved regions of animal AOX, we demonstrated that AOX genes are transcribed in several animals from different phyla. An analysis of full-length AOX sequences revealed an amino acid motif in the C-terminal region of the protein that is unique to animal AOXs. Animal AOX also lacks an N-terminal cysteine residue that is known to be important for AOX enzyme regulation in plants. We conclude that the presence of AOX is the ancestral state in animals and hypothesize that its absence in some lineages, including vertebrates, is due to gene loss events.
doi_str_mv 10.1242/jeb.032151
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67546876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67546876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-97e680a5f5fccdd4473d964f6742d9b268e05f1de7014959c105843414f5172f3</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMo7rp68QdITx6Erkk6SRpvsvgFCyLouaT5wCxtsyatrP_eyC44l4GZZ17eeRG6JHhJKNDbjW2XuKKEkSM0JyBEKQmwYzTHmNISS5AzdJbSBufiDE7RjEgONeB6jt7uu9HGQY3-2xZh541KtvBDoQbfqy7dFdPgvyZb6E8Vlc6oT6PXKe9NMapdGELvdWHyNPp2Gn0YztGJy5f24tAX6OPx4X31XK5fn15W9-tSV7UcSyksr7FijjmtjQEQlcmuHBdAjWwpry1mjhgrMAHJpCaY1VABAceIoK5aoOu97jaG7DCNTe-Ttl2nBhum1HDBgNeCZ_BmD-oYUorWNduYn4s_DcHNX4BNDrDZB5jhq4Pq1PbW_KOHxKpfB6Jr7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67546876</pqid></control><display><type>article</type><title>Alternative oxidase in animals: unique characteristics and taxonomic distribution</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>McDonald, Allison E ; Vanlerberghe, Greg C ; Staples, James F</creator><creatorcontrib>McDonald, Allison E ; Vanlerberghe, Greg C ; Staples, James F</creatorcontrib><description>Alternative oxidase (AOX), a ubiquinol oxidase, introduces a branch point into the respiratory electron transport chain, bypassing complexes III and IV and resulting in cyanide-resistant respiration. Previously, AOX was thought to be limited to plants and some fungi and protists but recent work has demonstrated the presence of AOX in most kingdoms of life, including animals. In the present study we identified AOX in 28 animal species representing nine phyla. This expands the known taxonomic distribution of AOX in animals by 10 species and two phyla. Using bioinformatics we found AOX gene sequences in members of the animal phyla Porifera, Placozoa, Cnidaria, Mollusca, Annelida, Nematoda, Echinodermata, Hemichordata and Chordata. Using reverse-transcriptase polymerase chain reaction (RT-PCR) with degenerate primers designed to recognize conserved regions of animal AOX, we demonstrated that AOX genes are transcribed in several animals from different phyla. An analysis of full-length AOX sequences revealed an amino acid motif in the C-terminal region of the protein that is unique to animal AOXs. Animal AOX also lacks an N-terminal cysteine residue that is known to be important for AOX enzyme regulation in plants. We conclude that the presence of AOX is the ancestral state in animals and hypothesize that its absence in some lineages, including vertebrates, is due to gene loss events.</description><identifier>ISSN: 0022-0949</identifier><identifier>EISSN: 1477-9145</identifier><identifier>DOI: 10.1242/jeb.032151</identifier><identifier>PMID: 19648408</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; DNA Primers ; Electron Transport ; Eukaryota - enzymology ; Evolution, Molecular ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Fungi - enzymology ; Invertebrates - enzymology ; Mitochondrial Membranes - enzymology ; Mitochondrial Proteins ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Phylogeny ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants - enzymology ; Reverse Transcriptase Polymerase Chain Reaction</subject><ispartof>Journal of experimental biology, 2009-08, Vol.212 (Pt 16), p.2627-2634</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-97e680a5f5fccdd4473d964f6742d9b268e05f1de7014959c105843414f5172f3</citedby><cites>FETCH-LOGICAL-c389t-97e680a5f5fccdd4473d964f6742d9b268e05f1de7014959c105843414f5172f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3678,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19648408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McDonald, Allison E</creatorcontrib><creatorcontrib>Vanlerberghe, Greg C</creatorcontrib><creatorcontrib>Staples, James F</creatorcontrib><title>Alternative oxidase in animals: unique characteristics and taxonomic distribution</title><title>Journal of experimental biology</title><addtitle>J Exp Biol</addtitle><description>Alternative oxidase (AOX), a ubiquinol oxidase, introduces a branch point into the respiratory electron transport chain, bypassing complexes III and IV and resulting in cyanide-resistant respiration. Previously, AOX was thought to be limited to plants and some fungi and protists but recent work has demonstrated the presence of AOX in most kingdoms of life, including animals. In the present study we identified AOX in 28 animal species representing nine phyla. This expands the known taxonomic distribution of AOX in animals by 10 species and two phyla. Using bioinformatics we found AOX gene sequences in members of the animal phyla Porifera, Placozoa, Cnidaria, Mollusca, Annelida, Nematoda, Echinodermata, Hemichordata and Chordata. Using reverse-transcriptase polymerase chain reaction (RT-PCR) with degenerate primers designed to recognize conserved regions of animal AOX, we demonstrated that AOX genes are transcribed in several animals from different phyla. An analysis of full-length AOX sequences revealed an amino acid motif in the C-terminal region of the protein that is unique to animal AOXs. Animal AOX also lacks an N-terminal cysteine residue that is known to be important for AOX enzyme regulation in plants. We conclude that the presence of AOX is the ancestral state in animals and hypothesize that its absence in some lineages, including vertebrates, is due to gene loss events.</description><subject>Animals</subject><subject>DNA Primers</subject><subject>Electron Transport</subject><subject>Eukaryota - enzymology</subject><subject>Evolution, Molecular</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungi - enzymology</subject><subject>Invertebrates - enzymology</subject><subject>Mitochondrial Membranes - enzymology</subject><subject>Mitochondrial Proteins</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Phylogeny</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants - enzymology</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><issn>0022-0949</issn><issn>1477-9145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1LxDAQhoMo7rp68QdITx6Erkk6SRpvsvgFCyLouaT5wCxtsyatrP_eyC44l4GZZ17eeRG6JHhJKNDbjW2XuKKEkSM0JyBEKQmwYzTHmNISS5AzdJbSBufiDE7RjEgONeB6jt7uu9HGQY3-2xZh541KtvBDoQbfqy7dFdPgvyZb6E8Vlc6oT6PXKe9NMapdGELvdWHyNPp2Gn0YztGJy5f24tAX6OPx4X31XK5fn15W9-tSV7UcSyksr7FijjmtjQEQlcmuHBdAjWwpry1mjhgrMAHJpCaY1VABAceIoK5aoOu97jaG7DCNTe-Ttl2nBhum1HDBgNeCZ_BmD-oYUorWNduYn4s_DcHNX4BNDrDZB5jhq4Pq1PbW_KOHxKpfB6Jr7w</recordid><startdate>20090815</startdate><enddate>20090815</enddate><creator>McDonald, Allison E</creator><creator>Vanlerberghe, Greg C</creator><creator>Staples, James F</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090815</creationdate><title>Alternative oxidase in animals: unique characteristics and taxonomic distribution</title><author>McDonald, Allison E ; Vanlerberghe, Greg C ; Staples, James F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-97e680a5f5fccdd4473d964f6742d9b268e05f1de7014959c105843414f5172f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>DNA Primers</topic><topic>Electron Transport</topic><topic>Eukaryota - enzymology</topic><topic>Evolution, Molecular</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungi - enzymology</topic><topic>Invertebrates - enzymology</topic><topic>Mitochondrial Membranes - enzymology</topic><topic>Mitochondrial Proteins</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Phylogeny</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants - enzymology</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDonald, Allison E</creatorcontrib><creatorcontrib>Vanlerberghe, Greg C</creatorcontrib><creatorcontrib>Staples, James F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of experimental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDonald, Allison E</au><au>Vanlerberghe, Greg C</au><au>Staples, James F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternative oxidase in animals: unique characteristics and taxonomic distribution</atitle><jtitle>Journal of experimental biology</jtitle><addtitle>J Exp Biol</addtitle><date>2009-08-15</date><risdate>2009</risdate><volume>212</volume><issue>Pt 16</issue><spage>2627</spage><epage>2634</epage><pages>2627-2634</pages><issn>0022-0949</issn><eissn>1477-9145</eissn><abstract>Alternative oxidase (AOX), a ubiquinol oxidase, introduces a branch point into the respiratory electron transport chain, bypassing complexes III and IV and resulting in cyanide-resistant respiration. Previously, AOX was thought to be limited to plants and some fungi and protists but recent work has demonstrated the presence of AOX in most kingdoms of life, including animals. In the present study we identified AOX in 28 animal species representing nine phyla. This expands the known taxonomic distribution of AOX in animals by 10 species and two phyla. Using bioinformatics we found AOX gene sequences in members of the animal phyla Porifera, Placozoa, Cnidaria, Mollusca, Annelida, Nematoda, Echinodermata, Hemichordata and Chordata. Using reverse-transcriptase polymerase chain reaction (RT-PCR) with degenerate primers designed to recognize conserved regions of animal AOX, we demonstrated that AOX genes are transcribed in several animals from different phyla. An analysis of full-length AOX sequences revealed an amino acid motif in the C-terminal region of the protein that is unique to animal AOXs. Animal AOX also lacks an N-terminal cysteine residue that is known to be important for AOX enzyme regulation in plants. We conclude that the presence of AOX is the ancestral state in animals and hypothesize that its absence in some lineages, including vertebrates, is due to gene loss events.</abstract><cop>England</cop><pmid>19648408</pmid><doi>10.1242/jeb.032151</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0949
ispartof Journal of experimental biology, 2009-08, Vol.212 (Pt 16), p.2627-2634
issn 0022-0949
1477-9145
language eng
recordid cdi_proquest_miscellaneous_67546876
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Company of Biologists
subjects Animals
DNA Primers
Electron Transport
Eukaryota - enzymology
Evolution, Molecular
Fungal Proteins - genetics
Fungal Proteins - metabolism
Fungi - enzymology
Invertebrates - enzymology
Mitochondrial Membranes - enzymology
Mitochondrial Proteins
Oxidoreductases - genetics
Oxidoreductases - metabolism
Phylogeny
Plant Proteins - genetics
Plant Proteins - metabolism
Plants - enzymology
Reverse Transcriptase Polymerase Chain Reaction
title Alternative oxidase in animals: unique characteristics and taxonomic distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternative%20oxidase%20in%20animals:%20unique%20characteristics%20and%20taxonomic%20distribution&rft.jtitle=Journal%20of%20experimental%20biology&rft.au=McDonald,%20Allison%20E&rft.date=2009-08-15&rft.volume=212&rft.issue=Pt%2016&rft.spage=2627&rft.epage=2634&rft.pages=2627-2634&rft.issn=0022-0949&rft.eissn=1477-9145&rft_id=info:doi/10.1242/jeb.032151&rft_dat=%3Cproquest_cross%3E67546876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67546876&rft_id=info:pmid/19648408&rfr_iscdi=true