Optical rheology of biological cells

A step stress deforming suspended cells causes a passive relaxation, due to a transiently cross-linked isotropic actin cortex underlying the cellular membrane. The fluid-to-solid transition occurs at a relaxation time coinciding with unbinding times of actin cross-linking proteins. Elastic contribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2005-03, Vol.94 (9), p.098103.1-098103.4, Article 098103
Hauptverfasser: WOTTAWAH, Falk, SCHINKINGER, Stefan, LINCOLN, Bryan, ANANTHAKRISHNAN, Revathi, ROMEYKE, Maren, GUCK, Jochen, KAS, Josef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 098103.4
container_issue 9
container_start_page 098103.1
container_title Physical review letters
container_volume 94
creator WOTTAWAH, Falk
SCHINKINGER, Stefan
LINCOLN, Bryan
ANANTHAKRISHNAN, Revathi
ROMEYKE, Maren
GUCK, Jochen
KAS, Josef
description A step stress deforming suspended cells causes a passive relaxation, due to a transiently cross-linked isotropic actin cortex underlying the cellular membrane. The fluid-to-solid transition occurs at a relaxation time coinciding with unbinding times of actin cross-linking proteins. Elastic contributions from slowly relaxing entangled filaments are negligible. The symmetric geometry of suspended cells ensures minimal statistical variability in their viscoelastic properties in contrast with adherent cells and thus is defining for different cell types. Mechanical stimuli on time scales of minutes trigger active structural responses.
doi_str_mv 10.1103/PhysRevLett.94.098103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67546804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67546804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9bc3310b19436c2ec00a53d03a0ec77fdaf041d483c85c3bae2bc5c7dc6a193b3</originalsourceid><addsrcrecordid>eNpNkFtLw0AQhRdRbK3-BKUP6lvqTPaWfZTiDQoV0edld7OxkbSpu4nQf29iA_XpDMN35nIIuUSYIQK9e13t4pv_WfimmSk2A5V13SMyRpAqkYjsmIwBKCYKQI7IWYxfAICpyE7JCLnMGIAYk-vltimdqaZh5euq_txN62Jqy778aztfVfGcnBSmiv5i0An5eHx4nz8ni-XTy_x-kThKZZMo2ymCRcWocKl3AIbTHKgB76QsclMAw5xl1GXcUWt8ah13MnfCoKKWTsjtfu421N-tj41el7G_wGx83UYtJGciA9aBfA-6UMcYfKG3oVybsNMIuo9H_4tHK6b38XS-q2FBa9c-P7iGPDrgZgBM7N4vgtm4Mh44IThnCukvw8VwCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67546804</pqid></control><display><type>article</type><title>Optical rheology of biological cells</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>WOTTAWAH, Falk ; SCHINKINGER, Stefan ; LINCOLN, Bryan ; ANANTHAKRISHNAN, Revathi ; ROMEYKE, Maren ; GUCK, Jochen ; KAS, Josef</creator><creatorcontrib>WOTTAWAH, Falk ; SCHINKINGER, Stefan ; LINCOLN, Bryan ; ANANTHAKRISHNAN, Revathi ; ROMEYKE, Maren ; GUCK, Jochen ; KAS, Josef</creatorcontrib><description>A step stress deforming suspended cells causes a passive relaxation, due to a transiently cross-linked isotropic actin cortex underlying the cellular membrane. The fluid-to-solid transition occurs at a relaxation time coinciding with unbinding times of actin cross-linking proteins. Elastic contributions from slowly relaxing entangled filaments are negligible. The symmetric geometry of suspended cells ensures minimal statistical variability in their viscoelastic properties in contrast with adherent cells and thus is defining for different cell types. Mechanical stimuli on time scales of minutes trigger active structural responses.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.94.098103</identifier><identifier>PMID: 15784006</identifier><identifier>CODEN: PRLTAO</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>Actins - chemistry ; Actins - physiology ; Animals ; Biological and medical sciences ; Biomechanical Phenomena ; Biomechanics. Biorheology ; Cell Shape ; Cytoskeleton - chemistry ; Cytoskeleton - physiology ; Elasticity ; Fibroblasts - cytology ; Fibroblasts - physiology ; Fundamental and applied biological sciences. Psychology ; Mice ; NIH 3T3 Cells ; Optics and Photonics ; Rheology - methods ; Tissues, organs and organisms biophysics</subject><ispartof>Physical review letters, 2005-03, Vol.94 (9), p.098103.1-098103.4, Article 098103</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9bc3310b19436c2ec00a53d03a0ec77fdaf041d483c85c3bae2bc5c7dc6a193b3</citedby><cites>FETCH-LOGICAL-c337t-9bc3310b19436c2ec00a53d03a0ec77fdaf041d483c85c3bae2bc5c7dc6a193b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16655491$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15784006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>WOTTAWAH, Falk</creatorcontrib><creatorcontrib>SCHINKINGER, Stefan</creatorcontrib><creatorcontrib>LINCOLN, Bryan</creatorcontrib><creatorcontrib>ANANTHAKRISHNAN, Revathi</creatorcontrib><creatorcontrib>ROMEYKE, Maren</creatorcontrib><creatorcontrib>GUCK, Jochen</creatorcontrib><creatorcontrib>KAS, Josef</creatorcontrib><title>Optical rheology of biological cells</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>A step stress deforming suspended cells causes a passive relaxation, due to a transiently cross-linked isotropic actin cortex underlying the cellular membrane. The fluid-to-solid transition occurs at a relaxation time coinciding with unbinding times of actin cross-linking proteins. Elastic contributions from slowly relaxing entangled filaments are negligible. The symmetric geometry of suspended cells ensures minimal statistical variability in their viscoelastic properties in contrast with adherent cells and thus is defining for different cell types. Mechanical stimuli on time scales of minutes trigger active structural responses.</description><subject>Actins - chemistry</subject><subject>Actins - physiology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics. Biorheology</subject><subject>Cell Shape</subject><subject>Cytoskeleton - chemistry</subject><subject>Cytoskeleton - physiology</subject><subject>Elasticity</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Mice</subject><subject>NIH 3T3 Cells</subject><subject>Optics and Photonics</subject><subject>Rheology - methods</subject><subject>Tissues, organs and organisms biophysics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkFtLw0AQhRdRbK3-BKUP6lvqTPaWfZTiDQoV0edld7OxkbSpu4nQf29iA_XpDMN35nIIuUSYIQK9e13t4pv_WfimmSk2A5V13SMyRpAqkYjsmIwBKCYKQI7IWYxfAICpyE7JCLnMGIAYk-vltimdqaZh5euq_txN62Jqy778aztfVfGcnBSmiv5i0An5eHx4nz8ni-XTy_x-kThKZZMo2ymCRcWocKl3AIbTHKgB76QsclMAw5xl1GXcUWt8ah13MnfCoKKWTsjtfu421N-tj41el7G_wGx83UYtJGciA9aBfA-6UMcYfKG3oVybsNMIuo9H_4tHK6b38XS-q2FBa9c-P7iGPDrgZgBM7N4vgtm4Mh44IThnCukvw8VwCg</recordid><startdate>20050311</startdate><enddate>20050311</enddate><creator>WOTTAWAH, Falk</creator><creator>SCHINKINGER, Stefan</creator><creator>LINCOLN, Bryan</creator><creator>ANANTHAKRISHNAN, Revathi</creator><creator>ROMEYKE, Maren</creator><creator>GUCK, Jochen</creator><creator>KAS, Josef</creator><general>American Physical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050311</creationdate><title>Optical rheology of biological cells</title><author>WOTTAWAH, Falk ; SCHINKINGER, Stefan ; LINCOLN, Bryan ; ANANTHAKRISHNAN, Revathi ; ROMEYKE, Maren ; GUCK, Jochen ; KAS, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9bc3310b19436c2ec00a53d03a0ec77fdaf041d483c85c3bae2bc5c7dc6a193b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Actins - chemistry</topic><topic>Actins - physiology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics. Biorheology</topic><topic>Cell Shape</topic><topic>Cytoskeleton - chemistry</topic><topic>Cytoskeleton - physiology</topic><topic>Elasticity</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Mice</topic><topic>NIH 3T3 Cells</topic><topic>Optics and Photonics</topic><topic>Rheology - methods</topic><topic>Tissues, organs and organisms biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WOTTAWAH, Falk</creatorcontrib><creatorcontrib>SCHINKINGER, Stefan</creatorcontrib><creatorcontrib>LINCOLN, Bryan</creatorcontrib><creatorcontrib>ANANTHAKRISHNAN, Revathi</creatorcontrib><creatorcontrib>ROMEYKE, Maren</creatorcontrib><creatorcontrib>GUCK, Jochen</creatorcontrib><creatorcontrib>KAS, Josef</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WOTTAWAH, Falk</au><au>SCHINKINGER, Stefan</au><au>LINCOLN, Bryan</au><au>ANANTHAKRISHNAN, Revathi</au><au>ROMEYKE, Maren</au><au>GUCK, Jochen</au><au>KAS, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical rheology of biological cells</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2005-03-11</date><risdate>2005</risdate><volume>94</volume><issue>9</issue><spage>098103.1</spage><epage>098103.4</epage><pages>098103.1-098103.4</pages><artnum>098103</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><coden>PRLTAO</coden><abstract>A step stress deforming suspended cells causes a passive relaxation, due to a transiently cross-linked isotropic actin cortex underlying the cellular membrane. The fluid-to-solid transition occurs at a relaxation time coinciding with unbinding times of actin cross-linking proteins. Elastic contributions from slowly relaxing entangled filaments are negligible. The symmetric geometry of suspended cells ensures minimal statistical variability in their viscoelastic properties in contrast with adherent cells and thus is defining for different cell types. Mechanical stimuli on time scales of minutes trigger active structural responses.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>15784006</pmid><doi>10.1103/PhysRevLett.94.098103</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2005-03, Vol.94 (9), p.098103.1-098103.4, Article 098103
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_67546804
source MEDLINE; American Physical Society Journals
subjects Actins - chemistry
Actins - physiology
Animals
Biological and medical sciences
Biomechanical Phenomena
Biomechanics. Biorheology
Cell Shape
Cytoskeleton - chemistry
Cytoskeleton - physiology
Elasticity
Fibroblasts - cytology
Fibroblasts - physiology
Fundamental and applied biological sciences. Psychology
Mice
NIH 3T3 Cells
Optics and Photonics
Rheology - methods
Tissues, organs and organisms biophysics
title Optical rheology of biological cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A46%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20rheology%20of%20biological%20cells&rft.jtitle=Physical%20review%20letters&rft.au=WOTTAWAH,%20Falk&rft.date=2005-03-11&rft.volume=94&rft.issue=9&rft.spage=098103.1&rft.epage=098103.4&rft.pages=098103.1-098103.4&rft.artnum=098103&rft.issn=0031-9007&rft.eissn=1079-7114&rft.coden=PRLTAO&rft_id=info:doi/10.1103/PhysRevLett.94.098103&rft_dat=%3Cproquest_cross%3E67546804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67546804&rft_id=info:pmid/15784006&rfr_iscdi=true