Optical rheology of biological cells
A step stress deforming suspended cells causes a passive relaxation, due to a transiently cross-linked isotropic actin cortex underlying the cellular membrane. The fluid-to-solid transition occurs at a relaxation time coinciding with unbinding times of actin cross-linking proteins. Elastic contribut...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2005-03, Vol.94 (9), p.098103.1-098103.4, Article 098103 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 098103.4 |
---|---|
container_issue | 9 |
container_start_page | 098103.1 |
container_title | Physical review letters |
container_volume | 94 |
creator | WOTTAWAH, Falk SCHINKINGER, Stefan LINCOLN, Bryan ANANTHAKRISHNAN, Revathi ROMEYKE, Maren GUCK, Jochen KAS, Josef |
description | A step stress deforming suspended cells causes a passive relaxation, due to a transiently cross-linked isotropic actin cortex underlying the cellular membrane. The fluid-to-solid transition occurs at a relaxation time coinciding with unbinding times of actin cross-linking proteins. Elastic contributions from slowly relaxing entangled filaments are negligible. The symmetric geometry of suspended cells ensures minimal statistical variability in their viscoelastic properties in contrast with adherent cells and thus is defining for different cell types. Mechanical stimuli on time scales of minutes trigger active structural responses. |
doi_str_mv | 10.1103/PhysRevLett.94.098103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67546804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67546804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9bc3310b19436c2ec00a53d03a0ec77fdaf041d483c85c3bae2bc5c7dc6a193b3</originalsourceid><addsrcrecordid>eNpNkFtLw0AQhRdRbK3-BKUP6lvqTPaWfZTiDQoV0edld7OxkbSpu4nQf29iA_XpDMN35nIIuUSYIQK9e13t4pv_WfimmSk2A5V13SMyRpAqkYjsmIwBKCYKQI7IWYxfAICpyE7JCLnMGIAYk-vltimdqaZh5euq_txN62Jqy778aztfVfGcnBSmiv5i0An5eHx4nz8ni-XTy_x-kThKZZMo2ymCRcWocKl3AIbTHKgB76QsclMAw5xl1GXcUWt8ah13MnfCoKKWTsjtfu421N-tj41el7G_wGx83UYtJGciA9aBfA-6UMcYfKG3oVybsNMIuo9H_4tHK6b38XS-q2FBa9c-P7iGPDrgZgBM7N4vgtm4Mh44IThnCukvw8VwCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67546804</pqid></control><display><type>article</type><title>Optical rheology of biological cells</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>WOTTAWAH, Falk ; SCHINKINGER, Stefan ; LINCOLN, Bryan ; ANANTHAKRISHNAN, Revathi ; ROMEYKE, Maren ; GUCK, Jochen ; KAS, Josef</creator><creatorcontrib>WOTTAWAH, Falk ; SCHINKINGER, Stefan ; LINCOLN, Bryan ; ANANTHAKRISHNAN, Revathi ; ROMEYKE, Maren ; GUCK, Jochen ; KAS, Josef</creatorcontrib><description>A step stress deforming suspended cells causes a passive relaxation, due to a transiently cross-linked isotropic actin cortex underlying the cellular membrane. The fluid-to-solid transition occurs at a relaxation time coinciding with unbinding times of actin cross-linking proteins. Elastic contributions from slowly relaxing entangled filaments are negligible. The symmetric geometry of suspended cells ensures minimal statistical variability in their viscoelastic properties in contrast with adherent cells and thus is defining for different cell types. Mechanical stimuli on time scales of minutes trigger active structural responses.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.94.098103</identifier><identifier>PMID: 15784006</identifier><identifier>CODEN: PRLTAO</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>Actins - chemistry ; Actins - physiology ; Animals ; Biological and medical sciences ; Biomechanical Phenomena ; Biomechanics. Biorheology ; Cell Shape ; Cytoskeleton - chemistry ; Cytoskeleton - physiology ; Elasticity ; Fibroblasts - cytology ; Fibroblasts - physiology ; Fundamental and applied biological sciences. Psychology ; Mice ; NIH 3T3 Cells ; Optics and Photonics ; Rheology - methods ; Tissues, organs and organisms biophysics</subject><ispartof>Physical review letters, 2005-03, Vol.94 (9), p.098103.1-098103.4, Article 098103</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9bc3310b19436c2ec00a53d03a0ec77fdaf041d483c85c3bae2bc5c7dc6a193b3</citedby><cites>FETCH-LOGICAL-c337t-9bc3310b19436c2ec00a53d03a0ec77fdaf041d483c85c3bae2bc5c7dc6a193b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16655491$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15784006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>WOTTAWAH, Falk</creatorcontrib><creatorcontrib>SCHINKINGER, Stefan</creatorcontrib><creatorcontrib>LINCOLN, Bryan</creatorcontrib><creatorcontrib>ANANTHAKRISHNAN, Revathi</creatorcontrib><creatorcontrib>ROMEYKE, Maren</creatorcontrib><creatorcontrib>GUCK, Jochen</creatorcontrib><creatorcontrib>KAS, Josef</creatorcontrib><title>Optical rheology of biological cells</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>A step stress deforming suspended cells causes a passive relaxation, due to a transiently cross-linked isotropic actin cortex underlying the cellular membrane. The fluid-to-solid transition occurs at a relaxation time coinciding with unbinding times of actin cross-linking proteins. Elastic contributions from slowly relaxing entangled filaments are negligible. The symmetric geometry of suspended cells ensures minimal statistical variability in their viscoelastic properties in contrast with adherent cells and thus is defining for different cell types. Mechanical stimuli on time scales of minutes trigger active structural responses.</description><subject>Actins - chemistry</subject><subject>Actins - physiology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics. Biorheology</subject><subject>Cell Shape</subject><subject>Cytoskeleton - chemistry</subject><subject>Cytoskeleton - physiology</subject><subject>Elasticity</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Mice</subject><subject>NIH 3T3 Cells</subject><subject>Optics and Photonics</subject><subject>Rheology - methods</subject><subject>Tissues, organs and organisms biophysics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkFtLw0AQhRdRbK3-BKUP6lvqTPaWfZTiDQoV0edld7OxkbSpu4nQf29iA_XpDMN35nIIuUSYIQK9e13t4pv_WfimmSk2A5V13SMyRpAqkYjsmIwBKCYKQI7IWYxfAICpyE7JCLnMGIAYk-vltimdqaZh5euq_txN62Jqy778aztfVfGcnBSmiv5i0An5eHx4nz8ni-XTy_x-kThKZZMo2ymCRcWocKl3AIbTHKgB76QsclMAw5xl1GXcUWt8ah13MnfCoKKWTsjtfu421N-tj41el7G_wGx83UYtJGciA9aBfA-6UMcYfKG3oVybsNMIuo9H_4tHK6b38XS-q2FBa9c-P7iGPDrgZgBM7N4vgtm4Mh44IThnCukvw8VwCg</recordid><startdate>20050311</startdate><enddate>20050311</enddate><creator>WOTTAWAH, Falk</creator><creator>SCHINKINGER, Stefan</creator><creator>LINCOLN, Bryan</creator><creator>ANANTHAKRISHNAN, Revathi</creator><creator>ROMEYKE, Maren</creator><creator>GUCK, Jochen</creator><creator>KAS, Josef</creator><general>American Physical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050311</creationdate><title>Optical rheology of biological cells</title><author>WOTTAWAH, Falk ; SCHINKINGER, Stefan ; LINCOLN, Bryan ; ANANTHAKRISHNAN, Revathi ; ROMEYKE, Maren ; GUCK, Jochen ; KAS, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9bc3310b19436c2ec00a53d03a0ec77fdaf041d483c85c3bae2bc5c7dc6a193b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Actins - chemistry</topic><topic>Actins - physiology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics. Biorheology</topic><topic>Cell Shape</topic><topic>Cytoskeleton - chemistry</topic><topic>Cytoskeleton - physiology</topic><topic>Elasticity</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Mice</topic><topic>NIH 3T3 Cells</topic><topic>Optics and Photonics</topic><topic>Rheology - methods</topic><topic>Tissues, organs and organisms biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WOTTAWAH, Falk</creatorcontrib><creatorcontrib>SCHINKINGER, Stefan</creatorcontrib><creatorcontrib>LINCOLN, Bryan</creatorcontrib><creatorcontrib>ANANTHAKRISHNAN, Revathi</creatorcontrib><creatorcontrib>ROMEYKE, Maren</creatorcontrib><creatorcontrib>GUCK, Jochen</creatorcontrib><creatorcontrib>KAS, Josef</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WOTTAWAH, Falk</au><au>SCHINKINGER, Stefan</au><au>LINCOLN, Bryan</au><au>ANANTHAKRISHNAN, Revathi</au><au>ROMEYKE, Maren</au><au>GUCK, Jochen</au><au>KAS, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical rheology of biological cells</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2005-03-11</date><risdate>2005</risdate><volume>94</volume><issue>9</issue><spage>098103.1</spage><epage>098103.4</epage><pages>098103.1-098103.4</pages><artnum>098103</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><coden>PRLTAO</coden><abstract>A step stress deforming suspended cells causes a passive relaxation, due to a transiently cross-linked isotropic actin cortex underlying the cellular membrane. The fluid-to-solid transition occurs at a relaxation time coinciding with unbinding times of actin cross-linking proteins. Elastic contributions from slowly relaxing entangled filaments are negligible. The symmetric geometry of suspended cells ensures minimal statistical variability in their viscoelastic properties in contrast with adherent cells and thus is defining for different cell types. Mechanical stimuli on time scales of minutes trigger active structural responses.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>15784006</pmid><doi>10.1103/PhysRevLett.94.098103</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2005-03, Vol.94 (9), p.098103.1-098103.4, Article 098103 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_67546804 |
source | MEDLINE; American Physical Society Journals |
subjects | Actins - chemistry Actins - physiology Animals Biological and medical sciences Biomechanical Phenomena Biomechanics. Biorheology Cell Shape Cytoskeleton - chemistry Cytoskeleton - physiology Elasticity Fibroblasts - cytology Fibroblasts - physiology Fundamental and applied biological sciences. Psychology Mice NIH 3T3 Cells Optics and Photonics Rheology - methods Tissues, organs and organisms biophysics |
title | Optical rheology of biological cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A46%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20rheology%20of%20biological%20cells&rft.jtitle=Physical%20review%20letters&rft.au=WOTTAWAH,%20Falk&rft.date=2005-03-11&rft.volume=94&rft.issue=9&rft.spage=098103.1&rft.epage=098103.4&rft.pages=098103.1-098103.4&rft.artnum=098103&rft.issn=0031-9007&rft.eissn=1079-7114&rft.coden=PRLTAO&rft_id=info:doi/10.1103/PhysRevLett.94.098103&rft_dat=%3Cproquest_cross%3E67546804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67546804&rft_id=info:pmid/15784006&rfr_iscdi=true |