Synthesis and EPR Studies of 2′‐Deoxyuridines with Alkynyl, Rodlike Linkages

Sonogashira coupling of diacetyl 5‐ethynyl‐2′‐deoxyuridine with diacetyl 5‐iodo‐2′‐deoxyuridine gave the acylated ethynediyl‐linked 2′‐deoxyuridine dimer (3 b; 63 %), which was deprotected with ammonia/methanol to give ethynediyl‐linked 2′‐deoxyuridines (3 a; 79 %). Treatment of 5‐ethynyl‐2′‐deoxyur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2009-08, Vol.15 (31), p.7569-7577
Hauptverfasser: Sniady, Adam, Sevilla, Michael D., Meneni, Srinivasarao, Lis, Tadeusz, Szafert, Slawomir, Khanduri, Deepthi, Finke, John M., Dembinski, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7577
container_issue 31
container_start_page 7569
container_title Chemistry : a European journal
container_volume 15
creator Sniady, Adam
Sevilla, Michael D.
Meneni, Srinivasarao
Lis, Tadeusz
Szafert, Slawomir
Khanduri, Deepthi
Finke, John M.
Dembinski, Roman
description Sonogashira coupling of diacetyl 5‐ethynyl‐2′‐deoxyuridine with diacetyl 5‐iodo‐2′‐deoxyuridine gave the acylated ethynediyl‐linked 2′‐deoxyuridine dimer (3 b; 63 %), which was deprotected with ammonia/methanol to give ethynediyl‐linked 2′‐deoxyuridines (3 a; 79 %). Treatment of 5‐ethynyl‐2′‐deoxyuridine (1 a) with 5‐iodo‐2′‐deoxyuridine gave the furopyrimidine linked to 2′‐deoxyuridine (78 %). Catalytic oxidative coupling of 1 a (O2, CuI, Pd/C, N,N‐dimethylformamide) gave butadiynediyl‐linked 2′‐deoxyuridines (4; 84 %). Double Sonogashira coupling of 5‐iodo‐2′‐deoxyuridine with 1,4‐diethynylbenzene gave 1,4‐phenylenediethynediyl‐bridged 2′‐deoxyuridines (5; 83 %). Cu‐catalyzed cycloisomerization of dimers 4 and 5 gave their furopyrimidine derivatives. One‐electron addition to 1 a, 3 a, and 4 gave the anion radical, the EPR spectra of which showed that the unpaired electron is largely localized at C6 of one uracil ring (17 G doublet) at 77 K. The EPR spectra of the one‐electron‐oxidized derivatives of ethynediyl‐ and butadiynediyl‐linked uridines 3 a and 4 at 77 K showed that the unpaired electron is delocalized over both rings. Therefore, structures 3 a and 4 provide an efficient electronic link for hole conduction between the uracil rings. However, for the excess electron, an activation barrier prevents coupling to both rings. These dimeric structures could provide a gate that would separate hole transfer from electron transport between strands in DNA systems. In the crystal structure of acylated dimer 3 b, the bases were found in the anti position relative to each other across the ethynyl link, and similar anti conformation was preserved in the derived furopyrimidine–deoxyuridine dinucleoside. One of two ways: Alkyne‐tethered dinucleosides have been shown to display two distinct behaviors; when reduced, the electron is localized on only one ring, whereas if they are oxidized the electron is delocalized across both rings (see figure). This effect could be used as a gate that separates hole and electron transport between strands in DNA systems.
doi_str_mv 10.1002/chem.200900481
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67545444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67545444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3831-22b8f53af54c6bb9776ea1aa5d452102b29e69a375601e98ff26acf4a010ad3</originalsourceid><addsrcrecordid>eNqFkMtOwkAUQCdGI4huXZpZubI473aWBFFMMBJwP5m2UxnpAzttsDs-wW_xk_gSSyCydHWTm3NPcg8A1xj1MULkPlqYrE8QkgixAJ-ALuYEe9QX_BR0kWS-JziVHXDh3AdqMUHpOehgKZCUAe2C6bzJq4Vx1kGdx3A0ncF5VcfWOFgkkGw3P9vN94Mpvpq6tLHN2_3aVgs4SJdN3qR3cFbEqV0aOLH5Ur8bdwnOEp06c3WYPTB_HL0Nx97k9el5OJh4EQ0o9ggJg4RTnXAWiTCUvi-MxlrzmLUPIBISaYTU1OcCYSODJCFCRwnTCCMd0x643VtXZfFZG1epzLrIpKnOTVE7JXzOOGOsBft7MCoL50qTqFVpM102CiO1K6h2BdVfwfbg5mCuw8zER_yQrAXkHljb1DT_6NRwPHo5yn8BXNN-xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67545444</pqid></control><display><type>article</type><title>Synthesis and EPR Studies of 2′‐Deoxyuridines with Alkynyl, Rodlike Linkages</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sniady, Adam ; Sevilla, Michael D. ; Meneni, Srinivasarao ; Lis, Tadeusz ; Szafert, Slawomir ; Khanduri, Deepthi ; Finke, John M. ; Dembinski, Roman</creator><creatorcontrib>Sniady, Adam ; Sevilla, Michael D. ; Meneni, Srinivasarao ; Lis, Tadeusz ; Szafert, Slawomir ; Khanduri, Deepthi ; Finke, John M. ; Dembinski, Roman</creatorcontrib><description>Sonogashira coupling of diacetyl 5‐ethynyl‐2′‐deoxyuridine with diacetyl 5‐iodo‐2′‐deoxyuridine gave the acylated ethynediyl‐linked 2′‐deoxyuridine dimer (3 b; 63 %), which was deprotected with ammonia/methanol to give ethynediyl‐linked 2′‐deoxyuridines (3 a; 79 %). Treatment of 5‐ethynyl‐2′‐deoxyuridine (1 a) with 5‐iodo‐2′‐deoxyuridine gave the furopyrimidine linked to 2′‐deoxyuridine (78 %). Catalytic oxidative coupling of 1 a (O2, CuI, Pd/C, N,N‐dimethylformamide) gave butadiynediyl‐linked 2′‐deoxyuridines (4; 84 %). Double Sonogashira coupling of 5‐iodo‐2′‐deoxyuridine with 1,4‐diethynylbenzene gave 1,4‐phenylenediethynediyl‐bridged 2′‐deoxyuridines (5; 83 %). Cu‐catalyzed cycloisomerization of dimers 4 and 5 gave their furopyrimidine derivatives. One‐electron addition to 1 a, 3 a, and 4 gave the anion radical, the EPR spectra of which showed that the unpaired electron is largely localized at C6 of one uracil ring (17 G doublet) at 77 K. The EPR spectra of the one‐electron‐oxidized derivatives of ethynediyl‐ and butadiynediyl‐linked uridines 3 a and 4 at 77 K showed that the unpaired electron is delocalized over both rings. Therefore, structures 3 a and 4 provide an efficient electronic link for hole conduction between the uracil rings. However, for the excess electron, an activation barrier prevents coupling to both rings. These dimeric structures could provide a gate that would separate hole transfer from electron transport between strands in DNA systems. In the crystal structure of acylated dimer 3 b, the bases were found in the anti position relative to each other across the ethynyl link, and similar anti conformation was preserved in the derived furopyrimidine–deoxyuridine dinucleoside. One of two ways: Alkyne‐tethered dinucleosides have been shown to display two distinct behaviors; when reduced, the electron is localized on only one ring, whereas if they are oxidized the electron is delocalized across both rings (see figure). This effect could be used as a gate that separates hole and electron transport between strands in DNA systems.</description><identifier>ISSN: 0947-6539</identifier><identifier>ISSN: 1521-3765</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.200900481</identifier><identifier>PMID: 19609983</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag</publisher><subject>alkynes ; Alkynes - chemical synthesis ; Alkynes - chemistry ; Catalysis ; Copper - chemistry ; Cross-Linking Reagents - chemical synthesis ; Cross-Linking Reagents - chemistry ; Crystallography, X-Ray ; Deoxyuridine - analogs &amp; derivatives ; Deoxyuridine - chemical synthesis ; Deoxyuridine - chemistry ; deoxyuridines ; DNA - chemistry ; electron delocalization ; Electron Spin Resonance Spectroscopy ; EPR spectroscopy ; furopyrimidine ; Iodides - chemistry ; Molecular Conformation ; Molecular Structure ; nucleosides</subject><ispartof>Chemistry : a European journal, 2009-08, Vol.15 (31), p.7569-7577</ispartof><rights>Copyright © 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3831-22b8f53af54c6bb9776ea1aa5d452102b29e69a375601e98ff26acf4a010ad3</citedby><cites>FETCH-LOGICAL-c3831-22b8f53af54c6bb9776ea1aa5d452102b29e69a375601e98ff26acf4a010ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.200900481$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.200900481$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19609983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sniady, Adam</creatorcontrib><creatorcontrib>Sevilla, Michael D.</creatorcontrib><creatorcontrib>Meneni, Srinivasarao</creatorcontrib><creatorcontrib>Lis, Tadeusz</creatorcontrib><creatorcontrib>Szafert, Slawomir</creatorcontrib><creatorcontrib>Khanduri, Deepthi</creatorcontrib><creatorcontrib>Finke, John M.</creatorcontrib><creatorcontrib>Dembinski, Roman</creatorcontrib><title>Synthesis and EPR Studies of 2′‐Deoxyuridines with Alkynyl, Rodlike Linkages</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Sonogashira coupling of diacetyl 5‐ethynyl‐2′‐deoxyuridine with diacetyl 5‐iodo‐2′‐deoxyuridine gave the acylated ethynediyl‐linked 2′‐deoxyuridine dimer (3 b; 63 %), which was deprotected with ammonia/methanol to give ethynediyl‐linked 2′‐deoxyuridines (3 a; 79 %). Treatment of 5‐ethynyl‐2′‐deoxyuridine (1 a) with 5‐iodo‐2′‐deoxyuridine gave the furopyrimidine linked to 2′‐deoxyuridine (78 %). Catalytic oxidative coupling of 1 a (O2, CuI, Pd/C, N,N‐dimethylformamide) gave butadiynediyl‐linked 2′‐deoxyuridines (4; 84 %). Double Sonogashira coupling of 5‐iodo‐2′‐deoxyuridine with 1,4‐diethynylbenzene gave 1,4‐phenylenediethynediyl‐bridged 2′‐deoxyuridines (5; 83 %). Cu‐catalyzed cycloisomerization of dimers 4 and 5 gave their furopyrimidine derivatives. One‐electron addition to 1 a, 3 a, and 4 gave the anion radical, the EPR spectra of which showed that the unpaired electron is largely localized at C6 of one uracil ring (17 G doublet) at 77 K. The EPR spectra of the one‐electron‐oxidized derivatives of ethynediyl‐ and butadiynediyl‐linked uridines 3 a and 4 at 77 K showed that the unpaired electron is delocalized over both rings. Therefore, structures 3 a and 4 provide an efficient electronic link for hole conduction between the uracil rings. However, for the excess electron, an activation barrier prevents coupling to both rings. These dimeric structures could provide a gate that would separate hole transfer from electron transport between strands in DNA systems. In the crystal structure of acylated dimer 3 b, the bases were found in the anti position relative to each other across the ethynyl link, and similar anti conformation was preserved in the derived furopyrimidine–deoxyuridine dinucleoside. One of two ways: Alkyne‐tethered dinucleosides have been shown to display two distinct behaviors; when reduced, the electron is localized on only one ring, whereas if they are oxidized the electron is delocalized across both rings (see figure). This effect could be used as a gate that separates hole and electron transport between strands in DNA systems.</description><subject>alkynes</subject><subject>Alkynes - chemical synthesis</subject><subject>Alkynes - chemistry</subject><subject>Catalysis</subject><subject>Copper - chemistry</subject><subject>Cross-Linking Reagents - chemical synthesis</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Crystallography, X-Ray</subject><subject>Deoxyuridine - analogs &amp; derivatives</subject><subject>Deoxyuridine - chemical synthesis</subject><subject>Deoxyuridine - chemistry</subject><subject>deoxyuridines</subject><subject>DNA - chemistry</subject><subject>electron delocalization</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>EPR spectroscopy</subject><subject>furopyrimidine</subject><subject>Iodides - chemistry</subject><subject>Molecular Conformation</subject><subject>Molecular Structure</subject><subject>nucleosides</subject><issn>0947-6539</issn><issn>1521-3765</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwkAUQCdGI4huXZpZubI473aWBFFMMBJwP5m2UxnpAzttsDs-wW_xk_gSSyCydHWTm3NPcg8A1xj1MULkPlqYrE8QkgixAJ-ALuYEe9QX_BR0kWS-JziVHXDh3AdqMUHpOehgKZCUAe2C6bzJq4Vx1kGdx3A0ncF5VcfWOFgkkGw3P9vN94Mpvpq6tLHN2_3aVgs4SJdN3qR3cFbEqV0aOLH5Ur8bdwnOEp06c3WYPTB_HL0Nx97k9el5OJh4EQ0o9ggJg4RTnXAWiTCUvi-MxlrzmLUPIBISaYTU1OcCYSODJCFCRwnTCCMd0x643VtXZfFZG1epzLrIpKnOTVE7JXzOOGOsBft7MCoL50qTqFVpM102CiO1K6h2BdVfwfbg5mCuw8zER_yQrAXkHljb1DT_6NRwPHo5yn8BXNN-xQ</recordid><startdate>20090803</startdate><enddate>20090803</enddate><creator>Sniady, Adam</creator><creator>Sevilla, Michael D.</creator><creator>Meneni, Srinivasarao</creator><creator>Lis, Tadeusz</creator><creator>Szafert, Slawomir</creator><creator>Khanduri, Deepthi</creator><creator>Finke, John M.</creator><creator>Dembinski, Roman</creator><general>WILEY‐VCH Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090803</creationdate><title>Synthesis and EPR Studies of 2′‐Deoxyuridines with Alkynyl, Rodlike Linkages</title><author>Sniady, Adam ; Sevilla, Michael D. ; Meneni, Srinivasarao ; Lis, Tadeusz ; Szafert, Slawomir ; Khanduri, Deepthi ; Finke, John M. ; Dembinski, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3831-22b8f53af54c6bb9776ea1aa5d452102b29e69a375601e98ff26acf4a010ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>alkynes</topic><topic>Alkynes - chemical synthesis</topic><topic>Alkynes - chemistry</topic><topic>Catalysis</topic><topic>Copper - chemistry</topic><topic>Cross-Linking Reagents - chemical synthesis</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Crystallography, X-Ray</topic><topic>Deoxyuridine - analogs &amp; derivatives</topic><topic>Deoxyuridine - chemical synthesis</topic><topic>Deoxyuridine - chemistry</topic><topic>deoxyuridines</topic><topic>DNA - chemistry</topic><topic>electron delocalization</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>EPR spectroscopy</topic><topic>furopyrimidine</topic><topic>Iodides - chemistry</topic><topic>Molecular Conformation</topic><topic>Molecular Structure</topic><topic>nucleosides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sniady, Adam</creatorcontrib><creatorcontrib>Sevilla, Michael D.</creatorcontrib><creatorcontrib>Meneni, Srinivasarao</creatorcontrib><creatorcontrib>Lis, Tadeusz</creatorcontrib><creatorcontrib>Szafert, Slawomir</creatorcontrib><creatorcontrib>Khanduri, Deepthi</creatorcontrib><creatorcontrib>Finke, John M.</creatorcontrib><creatorcontrib>Dembinski, Roman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sniady, Adam</au><au>Sevilla, Michael D.</au><au>Meneni, Srinivasarao</au><au>Lis, Tadeusz</au><au>Szafert, Slawomir</au><au>Khanduri, Deepthi</au><au>Finke, John M.</au><au>Dembinski, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and EPR Studies of 2′‐Deoxyuridines with Alkynyl, Rodlike Linkages</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2009-08-03</date><risdate>2009</risdate><volume>15</volume><issue>31</issue><spage>7569</spage><epage>7577</epage><pages>7569-7577</pages><issn>0947-6539</issn><issn>1521-3765</issn><eissn>1521-3765</eissn><abstract>Sonogashira coupling of diacetyl 5‐ethynyl‐2′‐deoxyuridine with diacetyl 5‐iodo‐2′‐deoxyuridine gave the acylated ethynediyl‐linked 2′‐deoxyuridine dimer (3 b; 63 %), which was deprotected with ammonia/methanol to give ethynediyl‐linked 2′‐deoxyuridines (3 a; 79 %). Treatment of 5‐ethynyl‐2′‐deoxyuridine (1 a) with 5‐iodo‐2′‐deoxyuridine gave the furopyrimidine linked to 2′‐deoxyuridine (78 %). Catalytic oxidative coupling of 1 a (O2, CuI, Pd/C, N,N‐dimethylformamide) gave butadiynediyl‐linked 2′‐deoxyuridines (4; 84 %). Double Sonogashira coupling of 5‐iodo‐2′‐deoxyuridine with 1,4‐diethynylbenzene gave 1,4‐phenylenediethynediyl‐bridged 2′‐deoxyuridines (5; 83 %). Cu‐catalyzed cycloisomerization of dimers 4 and 5 gave their furopyrimidine derivatives. One‐electron addition to 1 a, 3 a, and 4 gave the anion radical, the EPR spectra of which showed that the unpaired electron is largely localized at C6 of one uracil ring (17 G doublet) at 77 K. The EPR spectra of the one‐electron‐oxidized derivatives of ethynediyl‐ and butadiynediyl‐linked uridines 3 a and 4 at 77 K showed that the unpaired electron is delocalized over both rings. Therefore, structures 3 a and 4 provide an efficient electronic link for hole conduction between the uracil rings. However, for the excess electron, an activation barrier prevents coupling to both rings. These dimeric structures could provide a gate that would separate hole transfer from electron transport between strands in DNA systems. In the crystal structure of acylated dimer 3 b, the bases were found in the anti position relative to each other across the ethynyl link, and similar anti conformation was preserved in the derived furopyrimidine–deoxyuridine dinucleoside. One of two ways: Alkyne‐tethered dinucleosides have been shown to display two distinct behaviors; when reduced, the electron is localized on only one ring, whereas if they are oxidized the electron is delocalized across both rings (see figure). This effect could be used as a gate that separates hole and electron transport between strands in DNA systems.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag</pub><pmid>19609983</pmid><doi>10.1002/chem.200900481</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2009-08, Vol.15 (31), p.7569-7577
issn 0947-6539
1521-3765
1521-3765
language eng
recordid cdi_proquest_miscellaneous_67545444
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects alkynes
Alkynes - chemical synthesis
Alkynes - chemistry
Catalysis
Copper - chemistry
Cross-Linking Reagents - chemical synthesis
Cross-Linking Reagents - chemistry
Crystallography, X-Ray
Deoxyuridine - analogs & derivatives
Deoxyuridine - chemical synthesis
Deoxyuridine - chemistry
deoxyuridines
DNA - chemistry
electron delocalization
Electron Spin Resonance Spectroscopy
EPR spectroscopy
furopyrimidine
Iodides - chemistry
Molecular Conformation
Molecular Structure
nucleosides
title Synthesis and EPR Studies of 2′‐Deoxyuridines with Alkynyl, Rodlike Linkages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20EPR%20Studies%20of%202%E2%80%B2%E2%80%90Deoxyuridines%20with%20Alkynyl,%20Rodlike%20Linkages&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Sniady,%20Adam&rft.date=2009-08-03&rft.volume=15&rft.issue=31&rft.spage=7569&rft.epage=7577&rft.pages=7569-7577&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.200900481&rft_dat=%3Cproquest_cross%3E67545444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67545444&rft_id=info:pmid/19609983&rfr_iscdi=true