In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G→A mutations in introns of the dystrophin gene

Background:Splicing patterns are critical for assessing clinical phenotype of mutations in the dystrophin gene. However, it is still unclear how to predict alternative splicing pathways in such cases of splice-site mutation in the dystrophin gene.Objective:To identify elements determining alternativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical genetics 2009-08, Vol.46 (8), p.542-547
Hauptverfasser: Habara, Y, Takeshima, Y, Awano, H, Okizuka, Y, Zhang, Z, Saiki, K, Yagi, M, Matsuo, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 547
container_issue 8
container_start_page 542
container_title Journal of medical genetics
container_volume 46
creator Habara, Y
Takeshima, Y
Awano, H
Okizuka, Y
Zhang, Z
Saiki, K
Yagi, M
Matsuo, M
description Background:Splicing patterns are critical for assessing clinical phenotype of mutations in the dystrophin gene. However, it is still unclear how to predict alternative splicing pathways in such cases of splice-site mutation in the dystrophin gene.Objective:To identify elements determining alternative splicing pathways in intron +1G→A mutations of the dystrophin gene.Results:We found that exon 25 is spliced out in the +1G→A mutation in intron 25, resulting in mild Becker muscular dystrophy, and that a cryptic splice site within exon 45 was activated in severe Duchenne muscular dystrophy with a mutation of +1G→A mutation in 45. Furthermore, in vitro splicing analysis using a pre-constructed expression vector showed that the mutant intron 25 produced one transcript that lacked exon 25. In contrast, the same splice-site mutation in intron 45 produced three splicing products. One product used the same cryptic donor splice site within exon 45 as the in vivo donor site and another product used a cryptic splice site within the vector sequence. Notably, the available cryptic splice site was not activated by the same G→A mutation of intron 25.Conclusion:It was concluded that sequences inserted into the in vitro splicing assay minigene contain cis-elements that determine splicing pathways. By taking other +1G→A mutations in the introns of the dystrophin gene reported in the literature into consideration, it seems that cryptic splice-site activation is seen only in strong exons. This finding will help to elucidate the molecular pathogenesis of dystrophinopathy and to predict efficiency of induction of exon skipping with antisense oligonucleotides for treatment of Duchenne muscular dystrophy.
doi_str_mv 10.1136/jmg.2008.061259
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67541433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4023460561</sourcerecordid><originalsourceid>FETCH-LOGICAL-b470t-8822b9957d6febecb1c2283f88a4872f09b5cc134582a0c116ae8206c4a789b73</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiMEokNhzQ5ZQrAApbUdx3GW7QiGSgU2ha114nFmPORW2xnIC_AAvBGvwpNwRhm1EhskSz6X79z0J8lzRs8Yy-T5rt2ccUrVGZWM5-WDZMGEVKnkQjxMFpRynmI4O0mehLCjlGUFk4-TE1aiTZlaJL-vOrJ30fckDI0zrtsQ6KCZggskbPvvdk3iFiKBPbgGKte4OJG-JkCMn4bozFxnSXDREizqeoTJ2kbrW9dBF0ndewIN-h1Et7f3gwaIh2ggBsaAg6qJvGWrPz9_XZB2jAj3mHMdPtwPTRwbt5asp4D-sMXMxnb2afKohibYZ8f_NPny_t3N8kN6_Xl1tby4TitR0JgqxXlVlnmxlrWtrKmY4VxltVIgVMFrWla5MSwTueJADWMSrOJUGgGFKqsiO01ez30H39-ONkTdumBs00Bn-zFoWeSCiSxD8OU_4K4f8fgmaFYoxkqh8gN1PlPG9yF4W-vBuxb8pBnVB201aqsP2upZW6x4cew7Vq1d3_NHMRF4dQQgGGhqD51x4Y7jTHGRSY5cOnMuRPvjLg_-Gx6RFbn-9HWpP6rLUl7mN3qF_JuZr9rdf7f8C7ImzI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781194853</pqid></control><display><type>article</type><title>In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G→A mutations in introns of the dystrophin gene</title><source>BMJ Journals Online Archive</source><source>MEDLINE</source><creator>Habara, Y ; Takeshima, Y ; Awano, H ; Okizuka, Y ; Zhang, Z ; Saiki, K ; Yagi, M ; Matsuo, M</creator><creatorcontrib>Habara, Y ; Takeshima, Y ; Awano, H ; Okizuka, Y ; Zhang, Z ; Saiki, K ; Yagi, M ; Matsuo, M</creatorcontrib><description>Background:Splicing patterns are critical for assessing clinical phenotype of mutations in the dystrophin gene. However, it is still unclear how to predict alternative splicing pathways in such cases of splice-site mutation in the dystrophin gene.Objective:To identify elements determining alternative splicing pathways in intron +1G→A mutations of the dystrophin gene.Results:We found that exon 25 is spliced out in the +1G→A mutation in intron 25, resulting in mild Becker muscular dystrophy, and that a cryptic splice site within exon 45 was activated in severe Duchenne muscular dystrophy with a mutation of +1G→A mutation in 45. Furthermore, in vitro splicing analysis using a pre-constructed expression vector showed that the mutant intron 25 produced one transcript that lacked exon 25. In contrast, the same splice-site mutation in intron 45 produced three splicing products. One product used the same cryptic donor splice site within exon 45 as the in vivo donor site and another product used a cryptic splice site within the vector sequence. Notably, the available cryptic splice site was not activated by the same G→A mutation of intron 25.Conclusion:It was concluded that sequences inserted into the in vitro splicing assay minigene contain cis-elements that determine splicing pathways. By taking other +1G→A mutations in the introns of the dystrophin gene reported in the literature into consideration, it seems that cryptic splice-site activation is seen only in strong exons. This finding will help to elucidate the molecular pathogenesis of dystrophinopathy and to predict efficiency of induction of exon skipping with antisense oligonucleotides for treatment of Duchenne muscular dystrophy.</description><identifier>ISSN: 0022-2593</identifier><identifier>EISSN: 1468-6244</identifier><identifier>DOI: 10.1136/jmg.2008.061259</identifier><identifier>PMID: 19001018</identifier><identifier>CODEN: JMDGAE</identifier><language>eng</language><publisher>London: BMJ Publishing Group Ltd</publisher><subject>Biological and medical sciences ; DNA Mutational Analysis ; Dystrophin - genetics ; Enzymes ; Exons ; Fundamental and applied biological sciences. Psychology ; General aspects. Genetic counseling ; Genetics of eukaryotes. Biological and molecular evolution ; Genotype &amp; phenotype ; Humans ; Introns ; Medical genetics ; Medical sciences ; Molecular and cellular biology ; Muscular dystrophy ; Muscular Dystrophy, Duchenne - genetics ; Mutation ; Patients ; Point Mutation ; Polymorphism, Single Nucleotide ; Protein Isoforms ; Reproducibility of Results ; RNA Splicing ; RNA, Messenger - genetics</subject><ispartof>Journal of medical genetics, 2009-08, Vol.46 (8), p.542-547</ispartof><rights>2009 BMJ Publishing Group</rights><rights>2009 INIST-CNRS</rights><rights>Copyright: 2009 2009 BMJ Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b470t-8822b9957d6febecb1c2283f88a4872f09b5cc134582a0c116ae8206c4a789b73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://jmg.bmj.com/content/46/8/542.full.pdf$$EPDF$$P50$$Gbmj$$H</linktopdf><linktohtml>$$Uhttps://jmg.bmj.com/content/46/8/542.full$$EHTML$$P50$$Gbmj$$H</linktohtml><link.rule.ids>114,115,314,780,784,3196,23571,27924,27925,77600,77631</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21824362$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19001018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Habara, Y</creatorcontrib><creatorcontrib>Takeshima, Y</creatorcontrib><creatorcontrib>Awano, H</creatorcontrib><creatorcontrib>Okizuka, Y</creatorcontrib><creatorcontrib>Zhang, Z</creatorcontrib><creatorcontrib>Saiki, K</creatorcontrib><creatorcontrib>Yagi, M</creatorcontrib><creatorcontrib>Matsuo, M</creatorcontrib><title>In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G→A mutations in introns of the dystrophin gene</title><title>Journal of medical genetics</title><addtitle>J Med Genet</addtitle><description>Background:Splicing patterns are critical for assessing clinical phenotype of mutations in the dystrophin gene. However, it is still unclear how to predict alternative splicing pathways in such cases of splice-site mutation in the dystrophin gene.Objective:To identify elements determining alternative splicing pathways in intron +1G→A mutations of the dystrophin gene.Results:We found that exon 25 is spliced out in the +1G→A mutation in intron 25, resulting in mild Becker muscular dystrophy, and that a cryptic splice site within exon 45 was activated in severe Duchenne muscular dystrophy with a mutation of +1G→A mutation in 45. Furthermore, in vitro splicing analysis using a pre-constructed expression vector showed that the mutant intron 25 produced one transcript that lacked exon 25. In contrast, the same splice-site mutation in intron 45 produced three splicing products. One product used the same cryptic donor splice site within exon 45 as the in vivo donor site and another product used a cryptic splice site within the vector sequence. Notably, the available cryptic splice site was not activated by the same G→A mutation of intron 25.Conclusion:It was concluded that sequences inserted into the in vitro splicing assay minigene contain cis-elements that determine splicing pathways. By taking other +1G→A mutations in the introns of the dystrophin gene reported in the literature into consideration, it seems that cryptic splice-site activation is seen only in strong exons. This finding will help to elucidate the molecular pathogenesis of dystrophinopathy and to predict efficiency of induction of exon skipping with antisense oligonucleotides for treatment of Duchenne muscular dystrophy.</description><subject>Biological and medical sciences</subject><subject>DNA Mutational Analysis</subject><subject>Dystrophin - genetics</subject><subject>Enzymes</subject><subject>Exons</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Genetic counseling</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genotype &amp; phenotype</subject><subject>Humans</subject><subject>Introns</subject><subject>Medical genetics</subject><subject>Medical sciences</subject><subject>Molecular and cellular biology</subject><subject>Muscular dystrophy</subject><subject>Muscular Dystrophy, Duchenne - genetics</subject><subject>Mutation</subject><subject>Patients</subject><subject>Point Mutation</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Protein Isoforms</subject><subject>Reproducibility of Results</subject><subject>RNA Splicing</subject><subject>RNA, Messenger - genetics</subject><issn>0022-2593</issn><issn>1468-6244</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctu1DAUhiMEokNhzQ5ZQrAApbUdx3GW7QiGSgU2ha114nFmPORW2xnIC_AAvBGvwpNwRhm1EhskSz6X79z0J8lzRs8Yy-T5rt2ccUrVGZWM5-WDZMGEVKnkQjxMFpRynmI4O0mehLCjlGUFk4-TE1aiTZlaJL-vOrJ30fckDI0zrtsQ6KCZggskbPvvdk3iFiKBPbgGKte4OJG-JkCMn4bozFxnSXDREizqeoTJ2kbrW9dBF0ndewIN-h1Et7f3gwaIh2ggBsaAg6qJvGWrPz9_XZB2jAj3mHMdPtwPTRwbt5asp4D-sMXMxnb2afKohibYZ8f_NPny_t3N8kN6_Xl1tby4TitR0JgqxXlVlnmxlrWtrKmY4VxltVIgVMFrWla5MSwTueJADWMSrOJUGgGFKqsiO01ez30H39-ONkTdumBs00Bn-zFoWeSCiSxD8OU_4K4f8fgmaFYoxkqh8gN1PlPG9yF4W-vBuxb8pBnVB201aqsP2upZW6x4cew7Vq1d3_NHMRF4dQQgGGhqD51x4Y7jTHGRSY5cOnMuRPvjLg_-Gx6RFbn-9HWpP6rLUl7mN3qF_JuZr9rdf7f8C7ImzI0</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Habara, Y</creator><creator>Takeshima, Y</creator><creator>Awano, H</creator><creator>Okizuka, Y</creator><creator>Zhang, Z</creator><creator>Saiki, K</creator><creator>Yagi, M</creator><creator>Matsuo, M</creator><general>BMJ Publishing Group Ltd</general><general>BMJ Publishing Group</general><general>BMJ Publishing Group LTD</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20090801</creationdate><title>In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G→A mutations in introns of the dystrophin gene</title><author>Habara, Y ; Takeshima, Y ; Awano, H ; Okizuka, Y ; Zhang, Z ; Saiki, K ; Yagi, M ; Matsuo, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b470t-8822b9957d6febecb1c2283f88a4872f09b5cc134582a0c116ae8206c4a789b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological and medical sciences</topic><topic>DNA Mutational Analysis</topic><topic>Dystrophin - genetics</topic><topic>Enzymes</topic><topic>Exons</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Genetic counseling</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genotype &amp; phenotype</topic><topic>Humans</topic><topic>Introns</topic><topic>Medical genetics</topic><topic>Medical sciences</topic><topic>Molecular and cellular biology</topic><topic>Muscular dystrophy</topic><topic>Muscular Dystrophy, Duchenne - genetics</topic><topic>Mutation</topic><topic>Patients</topic><topic>Point Mutation</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Protein Isoforms</topic><topic>Reproducibility of Results</topic><topic>RNA Splicing</topic><topic>RNA, Messenger - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habara, Y</creatorcontrib><creatorcontrib>Takeshima, Y</creatorcontrib><creatorcontrib>Awano, H</creatorcontrib><creatorcontrib>Okizuka, Y</creatorcontrib><creatorcontrib>Zhang, Z</creatorcontrib><creatorcontrib>Saiki, K</creatorcontrib><creatorcontrib>Yagi, M</creatorcontrib><creatorcontrib>Matsuo, M</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habara, Y</au><au>Takeshima, Y</au><au>Awano, H</au><au>Okizuka, Y</au><au>Zhang, Z</au><au>Saiki, K</au><au>Yagi, M</au><au>Matsuo, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G→A mutations in introns of the dystrophin gene</atitle><jtitle>Journal of medical genetics</jtitle><addtitle>J Med Genet</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>46</volume><issue>8</issue><spage>542</spage><epage>547</epage><pages>542-547</pages><issn>0022-2593</issn><eissn>1468-6244</eissn><coden>JMDGAE</coden><abstract>Background:Splicing patterns are critical for assessing clinical phenotype of mutations in the dystrophin gene. However, it is still unclear how to predict alternative splicing pathways in such cases of splice-site mutation in the dystrophin gene.Objective:To identify elements determining alternative splicing pathways in intron +1G→A mutations of the dystrophin gene.Results:We found that exon 25 is spliced out in the +1G→A mutation in intron 25, resulting in mild Becker muscular dystrophy, and that a cryptic splice site within exon 45 was activated in severe Duchenne muscular dystrophy with a mutation of +1G→A mutation in 45. Furthermore, in vitro splicing analysis using a pre-constructed expression vector showed that the mutant intron 25 produced one transcript that lacked exon 25. In contrast, the same splice-site mutation in intron 45 produced three splicing products. One product used the same cryptic donor splice site within exon 45 as the in vivo donor site and another product used a cryptic splice site within the vector sequence. Notably, the available cryptic splice site was not activated by the same G→A mutation of intron 25.Conclusion:It was concluded that sequences inserted into the in vitro splicing assay minigene contain cis-elements that determine splicing pathways. By taking other +1G→A mutations in the introns of the dystrophin gene reported in the literature into consideration, it seems that cryptic splice-site activation is seen only in strong exons. This finding will help to elucidate the molecular pathogenesis of dystrophinopathy and to predict efficiency of induction of exon skipping with antisense oligonucleotides for treatment of Duchenne muscular dystrophy.</abstract><cop>London</cop><pub>BMJ Publishing Group Ltd</pub><pmid>19001018</pmid><doi>10.1136/jmg.2008.061259</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2593
ispartof Journal of medical genetics, 2009-08, Vol.46 (8), p.542-547
issn 0022-2593
1468-6244
language eng
recordid cdi_proquest_miscellaneous_67541433
source BMJ Journals Online Archive; MEDLINE
subjects Biological and medical sciences
DNA Mutational Analysis
Dystrophin - genetics
Enzymes
Exons
Fundamental and applied biological sciences. Psychology
General aspects. Genetic counseling
Genetics of eukaryotes. Biological and molecular evolution
Genotype & phenotype
Humans
Introns
Medical genetics
Medical sciences
Molecular and cellular biology
Muscular dystrophy
Muscular Dystrophy, Duchenne - genetics
Mutation
Patients
Point Mutation
Polymorphism, Single Nucleotide
Protein Isoforms
Reproducibility of Results
RNA Splicing
RNA, Messenger - genetics
title In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G→A mutations in introns of the dystrophin gene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20splicing%20analysis%20showed%20that%20availability%20of%20a%20cryptic%20splice%20site%20is%20not%20a%20determinant%20for%20alternative%20splicing%20patterns%20caused%20by%20+1G%E2%86%92A%20mutations%20in%20introns%20of%20the%20dystrophin%20gene&rft.jtitle=Journal%20of%20medical%20genetics&rft.au=Habara,%20Y&rft.date=2009-08-01&rft.volume=46&rft.issue=8&rft.spage=542&rft.epage=547&rft.pages=542-547&rft.issn=0022-2593&rft.eissn=1468-6244&rft.coden=JMDGAE&rft_id=info:doi/10.1136/jmg.2008.061259&rft_dat=%3Cproquest_cross%3E4023460561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781194853&rft_id=info:pmid/19001018&rfr_iscdi=true