In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G→A mutations in introns of the dystrophin gene
Background:Splicing patterns are critical for assessing clinical phenotype of mutations in the dystrophin gene. However, it is still unclear how to predict alternative splicing pathways in such cases of splice-site mutation in the dystrophin gene.Objective:To identify elements determining alternativ...
Gespeichert in:
Veröffentlicht in: | Journal of medical genetics 2009-08, Vol.46 (8), p.542-547 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 547 |
---|---|
container_issue | 8 |
container_start_page | 542 |
container_title | Journal of medical genetics |
container_volume | 46 |
creator | Habara, Y Takeshima, Y Awano, H Okizuka, Y Zhang, Z Saiki, K Yagi, M Matsuo, M |
description | Background:Splicing patterns are critical for assessing clinical phenotype of mutations in the dystrophin gene. However, it is still unclear how to predict alternative splicing pathways in such cases of splice-site mutation in the dystrophin gene.Objective:To identify elements determining alternative splicing pathways in intron +1G→A mutations of the dystrophin gene.Results:We found that exon 25 is spliced out in the +1G→A mutation in intron 25, resulting in mild Becker muscular dystrophy, and that a cryptic splice site within exon 45 was activated in severe Duchenne muscular dystrophy with a mutation of +1G→A mutation in 45. Furthermore, in vitro splicing analysis using a pre-constructed expression vector showed that the mutant intron 25 produced one transcript that lacked exon 25. In contrast, the same splice-site mutation in intron 45 produced three splicing products. One product used the same cryptic donor splice site within exon 45 as the in vivo donor site and another product used a cryptic splice site within the vector sequence. Notably, the available cryptic splice site was not activated by the same G→A mutation of intron 25.Conclusion:It was concluded that sequences inserted into the in vitro splicing assay minigene contain cis-elements that determine splicing pathways. By taking other +1G→A mutations in the introns of the dystrophin gene reported in the literature into consideration, it seems that cryptic splice-site activation is seen only in strong exons. This finding will help to elucidate the molecular pathogenesis of dystrophinopathy and to predict efficiency of induction of exon skipping with antisense oligonucleotides for treatment of Duchenne muscular dystrophy. |
doi_str_mv | 10.1136/jmg.2008.061259 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67541433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4023460561</sourcerecordid><originalsourceid>FETCH-LOGICAL-b470t-8822b9957d6febecb1c2283f88a4872f09b5cc134582a0c116ae8206c4a789b73</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiMEokNhzQ5ZQrAApbUdx3GW7QiGSgU2ha114nFmPORW2xnIC_AAvBGvwpNwRhm1EhskSz6X79z0J8lzRs8Yy-T5rt2ccUrVGZWM5-WDZMGEVKnkQjxMFpRynmI4O0mehLCjlGUFk4-TE1aiTZlaJL-vOrJ30fckDI0zrtsQ6KCZggskbPvvdk3iFiKBPbgGKte4OJG-JkCMn4bozFxnSXDREizqeoTJ2kbrW9dBF0ndewIN-h1Et7f3gwaIh2ggBsaAg6qJvGWrPz9_XZB2jAj3mHMdPtwPTRwbt5asp4D-sMXMxnb2afKohibYZ8f_NPny_t3N8kN6_Xl1tby4TitR0JgqxXlVlnmxlrWtrKmY4VxltVIgVMFrWla5MSwTueJADWMSrOJUGgGFKqsiO01ez30H39-ONkTdumBs00Bn-zFoWeSCiSxD8OU_4K4f8fgmaFYoxkqh8gN1PlPG9yF4W-vBuxb8pBnVB201aqsP2upZW6x4cew7Vq1d3_NHMRF4dQQgGGhqD51x4Y7jTHGRSY5cOnMuRPvjLg_-Gx6RFbn-9HWpP6rLUl7mN3qF_JuZr9rdf7f8C7ImzI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781194853</pqid></control><display><type>article</type><title>In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G→A mutations in introns of the dystrophin gene</title><source>BMJ Journals Online Archive</source><source>MEDLINE</source><creator>Habara, Y ; Takeshima, Y ; Awano, H ; Okizuka, Y ; Zhang, Z ; Saiki, K ; Yagi, M ; Matsuo, M</creator><creatorcontrib>Habara, Y ; Takeshima, Y ; Awano, H ; Okizuka, Y ; Zhang, Z ; Saiki, K ; Yagi, M ; Matsuo, M</creatorcontrib><description>Background:Splicing patterns are critical for assessing clinical phenotype of mutations in the dystrophin gene. However, it is still unclear how to predict alternative splicing pathways in such cases of splice-site mutation in the dystrophin gene.Objective:To identify elements determining alternative splicing pathways in intron +1G→A mutations of the dystrophin gene.Results:We found that exon 25 is spliced out in the +1G→A mutation in intron 25, resulting in mild Becker muscular dystrophy, and that a cryptic splice site within exon 45 was activated in severe Duchenne muscular dystrophy with a mutation of +1G→A mutation in 45. Furthermore, in vitro splicing analysis using a pre-constructed expression vector showed that the mutant intron 25 produced one transcript that lacked exon 25. In contrast, the same splice-site mutation in intron 45 produced three splicing products. One product used the same cryptic donor splice site within exon 45 as the in vivo donor site and another product used a cryptic splice site within the vector sequence. Notably, the available cryptic splice site was not activated by the same G→A mutation of intron 25.Conclusion:It was concluded that sequences inserted into the in vitro splicing assay minigene contain cis-elements that determine splicing pathways. By taking other +1G→A mutations in the introns of the dystrophin gene reported in the literature into consideration, it seems that cryptic splice-site activation is seen only in strong exons. This finding will help to elucidate the molecular pathogenesis of dystrophinopathy and to predict efficiency of induction of exon skipping with antisense oligonucleotides for treatment of Duchenne muscular dystrophy.</description><identifier>ISSN: 0022-2593</identifier><identifier>EISSN: 1468-6244</identifier><identifier>DOI: 10.1136/jmg.2008.061259</identifier><identifier>PMID: 19001018</identifier><identifier>CODEN: JMDGAE</identifier><language>eng</language><publisher>London: BMJ Publishing Group Ltd</publisher><subject>Biological and medical sciences ; DNA Mutational Analysis ; Dystrophin - genetics ; Enzymes ; Exons ; Fundamental and applied biological sciences. Psychology ; General aspects. Genetic counseling ; Genetics of eukaryotes. Biological and molecular evolution ; Genotype & phenotype ; Humans ; Introns ; Medical genetics ; Medical sciences ; Molecular and cellular biology ; Muscular dystrophy ; Muscular Dystrophy, Duchenne - genetics ; Mutation ; Patients ; Point Mutation ; Polymorphism, Single Nucleotide ; Protein Isoforms ; Reproducibility of Results ; RNA Splicing ; RNA, Messenger - genetics</subject><ispartof>Journal of medical genetics, 2009-08, Vol.46 (8), p.542-547</ispartof><rights>2009 BMJ Publishing Group</rights><rights>2009 INIST-CNRS</rights><rights>Copyright: 2009 2009 BMJ Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b470t-8822b9957d6febecb1c2283f88a4872f09b5cc134582a0c116ae8206c4a789b73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://jmg.bmj.com/content/46/8/542.full.pdf$$EPDF$$P50$$Gbmj$$H</linktopdf><linktohtml>$$Uhttps://jmg.bmj.com/content/46/8/542.full$$EHTML$$P50$$Gbmj$$H</linktohtml><link.rule.ids>114,115,314,780,784,3196,23571,27924,27925,77600,77631</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21824362$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19001018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Habara, Y</creatorcontrib><creatorcontrib>Takeshima, Y</creatorcontrib><creatorcontrib>Awano, H</creatorcontrib><creatorcontrib>Okizuka, Y</creatorcontrib><creatorcontrib>Zhang, Z</creatorcontrib><creatorcontrib>Saiki, K</creatorcontrib><creatorcontrib>Yagi, M</creatorcontrib><creatorcontrib>Matsuo, M</creatorcontrib><title>In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G→A mutations in introns of the dystrophin gene</title><title>Journal of medical genetics</title><addtitle>J Med Genet</addtitle><description>Background:Splicing patterns are critical for assessing clinical phenotype of mutations in the dystrophin gene. However, it is still unclear how to predict alternative splicing pathways in such cases of splice-site mutation in the dystrophin gene.Objective:To identify elements determining alternative splicing pathways in intron +1G→A mutations of the dystrophin gene.Results:We found that exon 25 is spliced out in the +1G→A mutation in intron 25, resulting in mild Becker muscular dystrophy, and that a cryptic splice site within exon 45 was activated in severe Duchenne muscular dystrophy with a mutation of +1G→A mutation in 45. Furthermore, in vitro splicing analysis using a pre-constructed expression vector showed that the mutant intron 25 produced one transcript that lacked exon 25. In contrast, the same splice-site mutation in intron 45 produced three splicing products. One product used the same cryptic donor splice site within exon 45 as the in vivo donor site and another product used a cryptic splice site within the vector sequence. Notably, the available cryptic splice site was not activated by the same G→A mutation of intron 25.Conclusion:It was concluded that sequences inserted into the in vitro splicing assay minigene contain cis-elements that determine splicing pathways. By taking other +1G→A mutations in the introns of the dystrophin gene reported in the literature into consideration, it seems that cryptic splice-site activation is seen only in strong exons. This finding will help to elucidate the molecular pathogenesis of dystrophinopathy and to predict efficiency of induction of exon skipping with antisense oligonucleotides for treatment of Duchenne muscular dystrophy.</description><subject>Biological and medical sciences</subject><subject>DNA Mutational Analysis</subject><subject>Dystrophin - genetics</subject><subject>Enzymes</subject><subject>Exons</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Genetic counseling</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genotype & phenotype</subject><subject>Humans</subject><subject>Introns</subject><subject>Medical genetics</subject><subject>Medical sciences</subject><subject>Molecular and cellular biology</subject><subject>Muscular dystrophy</subject><subject>Muscular Dystrophy, Duchenne - genetics</subject><subject>Mutation</subject><subject>Patients</subject><subject>Point Mutation</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Protein Isoforms</subject><subject>Reproducibility of Results</subject><subject>RNA Splicing</subject><subject>RNA, Messenger - genetics</subject><issn>0022-2593</issn><issn>1468-6244</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctu1DAUhiMEokNhzQ5ZQrAApbUdx3GW7QiGSgU2ha114nFmPORW2xnIC_AAvBGvwpNwRhm1EhskSz6X79z0J8lzRs8Yy-T5rt2ccUrVGZWM5-WDZMGEVKnkQjxMFpRynmI4O0mehLCjlGUFk4-TE1aiTZlaJL-vOrJ30fckDI0zrtsQ6KCZggskbPvvdk3iFiKBPbgGKte4OJG-JkCMn4bozFxnSXDREizqeoTJ2kbrW9dBF0ndewIN-h1Et7f3gwaIh2ggBsaAg6qJvGWrPz9_XZB2jAj3mHMdPtwPTRwbt5asp4D-sMXMxnb2afKohibYZ8f_NPny_t3N8kN6_Xl1tby4TitR0JgqxXlVlnmxlrWtrKmY4VxltVIgVMFrWla5MSwTueJADWMSrOJUGgGFKqsiO01ez30H39-ONkTdumBs00Bn-zFoWeSCiSxD8OU_4K4f8fgmaFYoxkqh8gN1PlPG9yF4W-vBuxb8pBnVB201aqsP2upZW6x4cew7Vq1d3_NHMRF4dQQgGGhqD51x4Y7jTHGRSY5cOnMuRPvjLg_-Gx6RFbn-9HWpP6rLUl7mN3qF_JuZr9rdf7f8C7ImzI0</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Habara, Y</creator><creator>Takeshima, Y</creator><creator>Awano, H</creator><creator>Okizuka, Y</creator><creator>Zhang, Z</creator><creator>Saiki, K</creator><creator>Yagi, M</creator><creator>Matsuo, M</creator><general>BMJ Publishing Group Ltd</general><general>BMJ Publishing Group</general><general>BMJ Publishing Group LTD</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20090801</creationdate><title>In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G→A mutations in introns of the dystrophin gene</title><author>Habara, Y ; Takeshima, Y ; Awano, H ; Okizuka, Y ; Zhang, Z ; Saiki, K ; Yagi, M ; Matsuo, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b470t-8822b9957d6febecb1c2283f88a4872f09b5cc134582a0c116ae8206c4a789b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological and medical sciences</topic><topic>DNA Mutational Analysis</topic><topic>Dystrophin - genetics</topic><topic>Enzymes</topic><topic>Exons</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Genetic counseling</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genotype & phenotype</topic><topic>Humans</topic><topic>Introns</topic><topic>Medical genetics</topic><topic>Medical sciences</topic><topic>Molecular and cellular biology</topic><topic>Muscular dystrophy</topic><topic>Muscular Dystrophy, Duchenne - genetics</topic><topic>Mutation</topic><topic>Patients</topic><topic>Point Mutation</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Protein Isoforms</topic><topic>Reproducibility of Results</topic><topic>RNA Splicing</topic><topic>RNA, Messenger - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habara, Y</creatorcontrib><creatorcontrib>Takeshima, Y</creatorcontrib><creatorcontrib>Awano, H</creatorcontrib><creatorcontrib>Okizuka, Y</creatorcontrib><creatorcontrib>Zhang, Z</creatorcontrib><creatorcontrib>Saiki, K</creatorcontrib><creatorcontrib>Yagi, M</creatorcontrib><creatorcontrib>Matsuo, M</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habara, Y</au><au>Takeshima, Y</au><au>Awano, H</au><au>Okizuka, Y</au><au>Zhang, Z</au><au>Saiki, K</au><au>Yagi, M</au><au>Matsuo, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G→A mutations in introns of the dystrophin gene</atitle><jtitle>Journal of medical genetics</jtitle><addtitle>J Med Genet</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>46</volume><issue>8</issue><spage>542</spage><epage>547</epage><pages>542-547</pages><issn>0022-2593</issn><eissn>1468-6244</eissn><coden>JMDGAE</coden><abstract>Background:Splicing patterns are critical for assessing clinical phenotype of mutations in the dystrophin gene. However, it is still unclear how to predict alternative splicing pathways in such cases of splice-site mutation in the dystrophin gene.Objective:To identify elements determining alternative splicing pathways in intron +1G→A mutations of the dystrophin gene.Results:We found that exon 25 is spliced out in the +1G→A mutation in intron 25, resulting in mild Becker muscular dystrophy, and that a cryptic splice site within exon 45 was activated in severe Duchenne muscular dystrophy with a mutation of +1G→A mutation in 45. Furthermore, in vitro splicing analysis using a pre-constructed expression vector showed that the mutant intron 25 produced one transcript that lacked exon 25. In contrast, the same splice-site mutation in intron 45 produced three splicing products. One product used the same cryptic donor splice site within exon 45 as the in vivo donor site and another product used a cryptic splice site within the vector sequence. Notably, the available cryptic splice site was not activated by the same G→A mutation of intron 25.Conclusion:It was concluded that sequences inserted into the in vitro splicing assay minigene contain cis-elements that determine splicing pathways. By taking other +1G→A mutations in the introns of the dystrophin gene reported in the literature into consideration, it seems that cryptic splice-site activation is seen only in strong exons. This finding will help to elucidate the molecular pathogenesis of dystrophinopathy and to predict efficiency of induction of exon skipping with antisense oligonucleotides for treatment of Duchenne muscular dystrophy.</abstract><cop>London</cop><pub>BMJ Publishing Group Ltd</pub><pmid>19001018</pmid><doi>10.1136/jmg.2008.061259</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2593 |
ispartof | Journal of medical genetics, 2009-08, Vol.46 (8), p.542-547 |
issn | 0022-2593 1468-6244 |
language | eng |
recordid | cdi_proquest_miscellaneous_67541433 |
source | BMJ Journals Online Archive; MEDLINE |
subjects | Biological and medical sciences DNA Mutational Analysis Dystrophin - genetics Enzymes Exons Fundamental and applied biological sciences. Psychology General aspects. Genetic counseling Genetics of eukaryotes. Biological and molecular evolution Genotype & phenotype Humans Introns Medical genetics Medical sciences Molecular and cellular biology Muscular dystrophy Muscular Dystrophy, Duchenne - genetics Mutation Patients Point Mutation Polymorphism, Single Nucleotide Protein Isoforms Reproducibility of Results RNA Splicing RNA, Messenger - genetics |
title | In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G→A mutations in introns of the dystrophin gene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20splicing%20analysis%20showed%20that%20availability%20of%20a%20cryptic%20splice%20site%20is%20not%20a%20determinant%20for%20alternative%20splicing%20patterns%20caused%20by%20+1G%E2%86%92A%20mutations%20in%20introns%20of%20the%20dystrophin%20gene&rft.jtitle=Journal%20of%20medical%20genetics&rft.au=Habara,%20Y&rft.date=2009-08-01&rft.volume=46&rft.issue=8&rft.spage=542&rft.epage=547&rft.pages=542-547&rft.issn=0022-2593&rft.eissn=1468-6244&rft.coden=JMDGAE&rft_id=info:doi/10.1136/jmg.2008.061259&rft_dat=%3Cproquest_cross%3E4023460561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781194853&rft_id=info:pmid/19001018&rfr_iscdi=true |