The cAMP Sensor Epac2 Is a Direct Target of Antidiabetic Sulfonylurea Drugs

Epac2, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rap1, is activated by adenosine 3′,5′-monophosphate. Fluorescence resonance energy transfer and binding experiments revealed that sulfonylureas, widely used antidiabetic drugs, interact directly with Epac2. Sulfonylur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2009-07, Vol.325 (5940), p.607-610
Hauptverfasser: Zhang, Chang-Liang, Katoh, Megumi, Shibasaki, Tadao, Minami, Kohtaro, Sunaga, Yasuhiro, Takahashi, Harumi, Yokoi, Norihide, Iwasaki, Masahiro, Miki, Takashi, Seino, Susumu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 610
container_issue 5940
container_start_page 607
container_title Science (American Association for the Advancement of Science)
container_volume 325
creator Zhang, Chang-Liang
Katoh, Megumi
Shibasaki, Tadao
Minami, Kohtaro
Sunaga, Yasuhiro
Takahashi, Harumi
Yokoi, Norihide
Iwasaki, Masahiro
Miki, Takashi
Seino, Susumu
description Epac2, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rap1, is activated by adenosine 3′,5′-monophosphate. Fluorescence resonance energy transfer and binding experiments revealed that sulfonylureas, widely used antidiabetic drugs, interact directly with Epac2. Sulfonylureas activated Rap1 specifically through Epac2. Sulfonylurea-stimulated insulin secretion was reduced both in vitro and in vivo in mice lacking Epac2, and the glucose-lowering effect of the sulfonylurea tolbutamide was decreased in these mice. Epac2 thus contributes to the effect of sulfonylureas to promote insulin secretion. Because Epac2 is also required for the action of incretins, gut hormones crucial for potentiating insulin secretion, it may be a promising target for antidiabetic drug development.
doi_str_mv 10.1126/science.1172256
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67540886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20544211</jstor_id><sourcerecordid>20544211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-f727385c62961f0cc43ceeaa0cb60215267ba3108f9deb007e9f853b77bf520f3</originalsourceid><addsrcrecordid>eNqF0cFr2zAUBnBRVpo03bmnDTFob26fJEuyjqHNttCUFZqdjaw8dQ6OnUn2If99NWJa6GUnId5PH-h9hFwyuGGMq9voamwdpovmXKoTMmVgZGY4iE9kCiBUVoCWE3Ie4xYgzYw4IxNmVJ4zZqbkYf0HqZs_PtFnbGMX6GJvHafLSC29rwO6nq5teMGedp7O277e1LbCvnb0eWh81x6aIWCiYXiJF-TU2ybi5_Gckd_fF-u7n9nq14_l3XyVOQmsz7zmWhTSKW4U8-BcLhyiteAqBZxJrnRlBYPCmw1WABqNL6SotK685ODFjFwfc_eh-ztg7MtdHR02jW2xG2KptMyhKNR_oVBcQ1pcgt8-wG03hDZ9ouRMSJOy8oRuj8iFLsaAvtyHemfDoWRQ_mujHNsoxzbSi69j7FDtcPPux_UncDUCG51tfLCtq-Ob46yAXEhI7svRbWPfhfc5yDznjIlXuX-adQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213598634</pqid></control><display><type>article</type><title>The cAMP Sensor Epac2 Is a Direct Target of Antidiabetic Sulfonylurea Drugs</title><source>MEDLINE</source><source>Science Online</source><source>JSTOR</source><creator>Zhang, Chang-Liang ; Katoh, Megumi ; Shibasaki, Tadao ; Minami, Kohtaro ; Sunaga, Yasuhiro ; Takahashi, Harumi ; Yokoi, Norihide ; Iwasaki, Masahiro ; Miki, Takashi ; Seino, Susumu</creator><creatorcontrib>Zhang, Chang-Liang ; Katoh, Megumi ; Shibasaki, Tadao ; Minami, Kohtaro ; Sunaga, Yasuhiro ; Takahashi, Harumi ; Yokoi, Norihide ; Iwasaki, Masahiro ; Miki, Takashi ; Seino, Susumu</creatorcontrib><description>Epac2, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rap1, is activated by adenosine 3′,5′-monophosphate. Fluorescence resonance energy transfer and binding experiments revealed that sulfonylureas, widely used antidiabetic drugs, interact directly with Epac2. Sulfonylureas activated Rap1 specifically through Epac2. Sulfonylurea-stimulated insulin secretion was reduced both in vitro and in vivo in mice lacking Epac2, and the glucose-lowering effect of the sulfonylurea tolbutamide was decreased in these mice. Epac2 thus contributes to the effect of sulfonylureas to promote insulin secretion. Because Epac2 is also required for the action of incretins, gut hormones crucial for potentiating insulin secretion, it may be a promising target for antidiabetic drug development.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1172256</identifier><identifier>PMID: 19644119</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>8-Bromo Cyclic Adenosine Monophosphate - pharmacology ; Animals ; Biological and medical sciences ; Biomedical technology ; Blood glucose ; Blood Glucose - analysis ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Line ; Cercopithecus aethiops ; COS Cells ; Cyclic AMP - metabolism ; Diabetes ; Fluorescence Resonance Energy Transfer ; Glucose ; Glucose - administration &amp; dosage ; Glyburide - metabolism ; Glyburide - pharmacology ; Guanine Nucleotide Exchange Factors - genetics ; Guanine Nucleotide Exchange Factors - metabolism ; Hormones. Endocrine system ; Hypoglycemic agents ; Hypoglycemic Agents - chemistry ; Hypoglycemic Agents - metabolism ; Hypoglycemic Agents - pharmacology ; Insulin ; Insulin - blood ; Insulin - metabolism ; Insulin Secretion ; Islets of Langerhans - metabolism ; Medical research ; Medical sciences ; Metabolism ; Mice ; Mice, Inbred C57BL ; Pharmacology ; Pharmacology. Drug treatments ; Prescription drugs ; rap1 GTP-Binding Proteins - metabolism ; Rodents ; Sensors ; Sulfonylurea Compounds - chemistry ; Sulfonylurea Compounds - metabolism ; Sulfonylurea Compounds - pharmacology ; Tolbutamide - metabolism ; Tolbutamide - pharmacology ; Vehicles</subject><ispartof>Science (American Association for the Advancement of Science), 2009-07, Vol.325 (5940), p.607-610</ispartof><rights>Copyright 2009 American Association for the Advancement of Science</rights><rights>2009 INIST-CNRS</rights><rights>Copyright © 2009, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-f727385c62961f0cc43ceeaa0cb60215267ba3108f9deb007e9f853b77bf520f3</citedby><cites>FETCH-LOGICAL-c501t-f727385c62961f0cc43ceeaa0cb60215267ba3108f9deb007e9f853b77bf520f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20544211$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20544211$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,2885,2886,27929,27930,58022,58255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21804350$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19644119$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Chang-Liang</creatorcontrib><creatorcontrib>Katoh, Megumi</creatorcontrib><creatorcontrib>Shibasaki, Tadao</creatorcontrib><creatorcontrib>Minami, Kohtaro</creatorcontrib><creatorcontrib>Sunaga, Yasuhiro</creatorcontrib><creatorcontrib>Takahashi, Harumi</creatorcontrib><creatorcontrib>Yokoi, Norihide</creatorcontrib><creatorcontrib>Iwasaki, Masahiro</creatorcontrib><creatorcontrib>Miki, Takashi</creatorcontrib><creatorcontrib>Seino, Susumu</creatorcontrib><title>The cAMP Sensor Epac2 Is a Direct Target of Antidiabetic Sulfonylurea Drugs</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Epac2, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rap1, is activated by adenosine 3′,5′-monophosphate. Fluorescence resonance energy transfer and binding experiments revealed that sulfonylureas, widely used antidiabetic drugs, interact directly with Epac2. Sulfonylureas activated Rap1 specifically through Epac2. Sulfonylurea-stimulated insulin secretion was reduced both in vitro and in vivo in mice lacking Epac2, and the glucose-lowering effect of the sulfonylurea tolbutamide was decreased in these mice. Epac2 thus contributes to the effect of sulfonylureas to promote insulin secretion. Because Epac2 is also required for the action of incretins, gut hormones crucial for potentiating insulin secretion, it may be a promising target for antidiabetic drug development.</description><subject>8-Bromo Cyclic Adenosine Monophosphate - pharmacology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomedical technology</subject><subject>Blood glucose</subject><subject>Blood Glucose - analysis</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Line</subject><subject>Cercopithecus aethiops</subject><subject>COS Cells</subject><subject>Cyclic AMP - metabolism</subject><subject>Diabetes</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Glucose</subject><subject>Glucose - administration &amp; dosage</subject><subject>Glyburide - metabolism</subject><subject>Glyburide - pharmacology</subject><subject>Guanine Nucleotide Exchange Factors - genetics</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>Hormones. Endocrine system</subject><subject>Hypoglycemic agents</subject><subject>Hypoglycemic Agents - chemistry</subject><subject>Hypoglycemic Agents - metabolism</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Insulin</subject><subject>Insulin - blood</subject><subject>Insulin - metabolism</subject><subject>Insulin Secretion</subject><subject>Islets of Langerhans - metabolism</subject><subject>Medical research</subject><subject>Medical sciences</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Pharmacology</subject><subject>Pharmacology. Drug treatments</subject><subject>Prescription drugs</subject><subject>rap1 GTP-Binding Proteins - metabolism</subject><subject>Rodents</subject><subject>Sensors</subject><subject>Sulfonylurea Compounds - chemistry</subject><subject>Sulfonylurea Compounds - metabolism</subject><subject>Sulfonylurea Compounds - pharmacology</subject><subject>Tolbutamide - metabolism</subject><subject>Tolbutamide - pharmacology</subject><subject>Vehicles</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0cFr2zAUBnBRVpo03bmnDTFob26fJEuyjqHNttCUFZqdjaw8dQ6OnUn2If99NWJa6GUnId5PH-h9hFwyuGGMq9voamwdpovmXKoTMmVgZGY4iE9kCiBUVoCWE3Ie4xYgzYw4IxNmVJ4zZqbkYf0HqZs_PtFnbGMX6GJvHafLSC29rwO6nq5teMGedp7O277e1LbCvnb0eWh81x6aIWCiYXiJF-TU2ybi5_Gckd_fF-u7n9nq14_l3XyVOQmsz7zmWhTSKW4U8-BcLhyiteAqBZxJrnRlBYPCmw1WABqNL6SotK685ODFjFwfc_eh-ztg7MtdHR02jW2xG2KptMyhKNR_oVBcQ1pcgt8-wG03hDZ9ouRMSJOy8oRuj8iFLsaAvtyHemfDoWRQ_mujHNsoxzbSi69j7FDtcPPux_UncDUCG51tfLCtq-Ob46yAXEhI7svRbWPfhfc5yDznjIlXuX-adQ</recordid><startdate>20090731</startdate><enddate>20090731</enddate><creator>Zhang, Chang-Liang</creator><creator>Katoh, Megumi</creator><creator>Shibasaki, Tadao</creator><creator>Minami, Kohtaro</creator><creator>Sunaga, Yasuhiro</creator><creator>Takahashi, Harumi</creator><creator>Yokoi, Norihide</creator><creator>Iwasaki, Masahiro</creator><creator>Miki, Takashi</creator><creator>Seino, Susumu</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090731</creationdate><title>The cAMP Sensor Epac2 Is a Direct Target of Antidiabetic Sulfonylurea Drugs</title><author>Zhang, Chang-Liang ; Katoh, Megumi ; Shibasaki, Tadao ; Minami, Kohtaro ; Sunaga, Yasuhiro ; Takahashi, Harumi ; Yokoi, Norihide ; Iwasaki, Masahiro ; Miki, Takashi ; Seino, Susumu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-f727385c62961f0cc43ceeaa0cb60215267ba3108f9deb007e9f853b77bf520f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>8-Bromo Cyclic Adenosine Monophosphate - pharmacology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomedical technology</topic><topic>Blood glucose</topic><topic>Blood Glucose - analysis</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Line</topic><topic>Cercopithecus aethiops</topic><topic>COS Cells</topic><topic>Cyclic AMP - metabolism</topic><topic>Diabetes</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Glucose</topic><topic>Glucose - administration &amp; dosage</topic><topic>Glyburide - metabolism</topic><topic>Glyburide - pharmacology</topic><topic>Guanine Nucleotide Exchange Factors - genetics</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>Hormones. Endocrine system</topic><topic>Hypoglycemic agents</topic><topic>Hypoglycemic Agents - chemistry</topic><topic>Hypoglycemic Agents - metabolism</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Insulin</topic><topic>Insulin - blood</topic><topic>Insulin - metabolism</topic><topic>Insulin Secretion</topic><topic>Islets of Langerhans - metabolism</topic><topic>Medical research</topic><topic>Medical sciences</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Pharmacology</topic><topic>Pharmacology. Drug treatments</topic><topic>Prescription drugs</topic><topic>rap1 GTP-Binding Proteins - metabolism</topic><topic>Rodents</topic><topic>Sensors</topic><topic>Sulfonylurea Compounds - chemistry</topic><topic>Sulfonylurea Compounds - metabolism</topic><topic>Sulfonylurea Compounds - pharmacology</topic><topic>Tolbutamide - metabolism</topic><topic>Tolbutamide - pharmacology</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chang-Liang</creatorcontrib><creatorcontrib>Katoh, Megumi</creatorcontrib><creatorcontrib>Shibasaki, Tadao</creatorcontrib><creatorcontrib>Minami, Kohtaro</creatorcontrib><creatorcontrib>Sunaga, Yasuhiro</creatorcontrib><creatorcontrib>Takahashi, Harumi</creatorcontrib><creatorcontrib>Yokoi, Norihide</creatorcontrib><creatorcontrib>Iwasaki, Masahiro</creatorcontrib><creatorcontrib>Miki, Takashi</creatorcontrib><creatorcontrib>Seino, Susumu</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chang-Liang</au><au>Katoh, Megumi</au><au>Shibasaki, Tadao</au><au>Minami, Kohtaro</au><au>Sunaga, Yasuhiro</au><au>Takahashi, Harumi</au><au>Yokoi, Norihide</au><au>Iwasaki, Masahiro</au><au>Miki, Takashi</au><au>Seino, Susumu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The cAMP Sensor Epac2 Is a Direct Target of Antidiabetic Sulfonylurea Drugs</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2009-07-31</date><risdate>2009</risdate><volume>325</volume><issue>5940</issue><spage>607</spage><epage>610</epage><pages>607-610</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Epac2, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rap1, is activated by adenosine 3′,5′-monophosphate. Fluorescence resonance energy transfer and binding experiments revealed that sulfonylureas, widely used antidiabetic drugs, interact directly with Epac2. Sulfonylureas activated Rap1 specifically through Epac2. Sulfonylurea-stimulated insulin secretion was reduced both in vitro and in vivo in mice lacking Epac2, and the glucose-lowering effect of the sulfonylurea tolbutamide was decreased in these mice. Epac2 thus contributes to the effect of sulfonylureas to promote insulin secretion. Because Epac2 is also required for the action of incretins, gut hormones crucial for potentiating insulin secretion, it may be a promising target for antidiabetic drug development.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>19644119</pmid><doi>10.1126/science.1172256</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2009-07, Vol.325 (5940), p.607-610
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_67540886
source MEDLINE; Science Online; JSTOR
subjects 8-Bromo Cyclic Adenosine Monophosphate - pharmacology
Animals
Biological and medical sciences
Biomedical technology
Blood glucose
Blood Glucose - analysis
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Line
Cercopithecus aethiops
COS Cells
Cyclic AMP - metabolism
Diabetes
Fluorescence Resonance Energy Transfer
Glucose
Glucose - administration & dosage
Glyburide - metabolism
Glyburide - pharmacology
Guanine Nucleotide Exchange Factors - genetics
Guanine Nucleotide Exchange Factors - metabolism
Hormones. Endocrine system
Hypoglycemic agents
Hypoglycemic Agents - chemistry
Hypoglycemic Agents - metabolism
Hypoglycemic Agents - pharmacology
Insulin
Insulin - blood
Insulin - metabolism
Insulin Secretion
Islets of Langerhans - metabolism
Medical research
Medical sciences
Metabolism
Mice
Mice, Inbred C57BL
Pharmacology
Pharmacology. Drug treatments
Prescription drugs
rap1 GTP-Binding Proteins - metabolism
Rodents
Sensors
Sulfonylurea Compounds - chemistry
Sulfonylurea Compounds - metabolism
Sulfonylurea Compounds - pharmacology
Tolbutamide - metabolism
Tolbutamide - pharmacology
Vehicles
title The cAMP Sensor Epac2 Is a Direct Target of Antidiabetic Sulfonylurea Drugs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20cAMP%20Sensor%20Epac2%20Is%20a%20Direct%20Target%20of%20Antidiabetic%20Sulfonylurea%20Drugs&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Zhang,%20Chang-Liang&rft.date=2009-07-31&rft.volume=325&rft.issue=5940&rft.spage=607&rft.epage=610&rft.pages=607-610&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1172256&rft_dat=%3Cjstor_proqu%3E20544211%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213598634&rft_id=info:pmid/19644119&rft_jstor_id=20544211&rfr_iscdi=true