Confined Phonons in Si Nanowires

Raman microprobe studies of long crystalline Si nanowires reveal for the first time the evolution of phonon confinement with wire diameter. The Raman band at ∼520 cm-1 in bulk Si is found to downshift and asymmetrically broaden to lower frequency with decreasing wire diameter D̄, in good agreement w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2005-03, Vol.5 (3), p.409-414
Hauptverfasser: Adu, K. W., Gutiérrez, H. R., Kim, U. J., Sumanasekera, G. U., Eklund, P. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue 3
container_start_page 409
container_title Nano letters
container_volume 5
creator Adu, K. W.
Gutiérrez, H. R.
Kim, U. J.
Sumanasekera, G. U.
Eklund, P. C.
description Raman microprobe studies of long crystalline Si nanowires reveal for the first time the evolution of phonon confinement with wire diameter. The Raman band at ∼520 cm-1 in bulk Si is found to downshift and asymmetrically broaden to lower frequency with decreasing wire diameter D̄, in good agreement with a phenomenological model first proposed by Richter et al. An adjustable parameter (α) is added to the theory that defines the width of the Gaussian phonon confinement function. We find that this parameter is not sensitive to diameter over the range 4−25 nm.
doi_str_mv 10.1021/nl0486259
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67537585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67537585</sourcerecordid><originalsourceid>FETCH-LOGICAL-a343t-38b0a8d1e5031c465dbda2bbcc43881503abcfb254207b3a7024b39a032f3ae73</originalsourceid><addsrcrecordid>eNpt0E1LxDAQBuAgiqurB_-A9KLgoTr5atOjLH7BooJ6DpM0xS7dZE22iP_eypbdi6cM4eEd5iXkjMI1BUZvfAdCFUxWe-SISg55UVVsfzsrMSHHKS0AoOISDsmEylJKUPKIZLPgm9a7Onv9DD74lLU-e2uzZ_Thu40unZCDBrvkTsd3Sj7u795nj_n85eFpdjvPkQu-zrkygKqmTgKnVhSyNjUyY6wVXCk6_KKxjWFSMCgNxxKYMLxC4Kzh6Eo-JZeb3FUMX71La71sk3Vdh96FPumilLyUSg7wagNtDClF1-hVbJcYfzQF_VeH3tYx2PMxtDdLV-_keP8ALkaAyWLXRPS2TTtXDDGqrHYObdKL0Ec_dPHPwl9mZnCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67537585</pqid></control><display><type>article</type><title>Confined Phonons in Si Nanowires</title><source>ACS Publications</source><source>MEDLINE</source><creator>Adu, K. W. ; Gutiérrez, H. R. ; Kim, U. J. ; Sumanasekera, G. U. ; Eklund, P. C.</creator><creatorcontrib>Adu, K. W. ; Gutiérrez, H. R. ; Kim, U. J. ; Sumanasekera, G. U. ; Eklund, P. C.</creatorcontrib><description>Raman microprobe studies of long crystalline Si nanowires reveal for the first time the evolution of phonon confinement with wire diameter. The Raman band at ∼520 cm-1 in bulk Si is found to downshift and asymmetrically broaden to lower frequency with decreasing wire diameter D̄, in good agreement with a phenomenological model first proposed by Richter et al. An adjustable parameter (α) is added to the theory that defines the width of the Gaussian phonon confinement function. We find that this parameter is not sensitive to diameter over the range 4−25 nm.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl0486259</identifier><identifier>PMID: 15755085</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Computer Simulation ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystallization - methods ; Exact sciences and technology ; Lattice dynamics ; Materials science ; Materials Testing ; Models, Chemical ; Models, Molecular ; Molecular Conformation ; Nanoscale materials and structures: fabrication and characterization ; Nanotechnology - methods ; Nanotubes - analysis ; Nanotubes - chemistry ; Nanotubes - ultrastructure ; Particle Size ; Phonon states and bands, normal modes, and phonon dispersion ; Phonons and vibrations in crystal lattices ; Physics ; Quantum wires ; Silicon - analysis ; Silicon - chemistry ; Spectrum Analysis, Raman - methods ; Structure-Activity Relationship ; Vibration</subject><ispartof>Nano letters, 2005-03, Vol.5 (3), p.409-414</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a343t-38b0a8d1e5031c465dbda2bbcc43881503abcfb254207b3a7024b39a032f3ae73</citedby><cites>FETCH-LOGICAL-a343t-38b0a8d1e5031c465dbda2bbcc43881503abcfb254207b3a7024b39a032f3ae73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl0486259$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl0486259$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16625879$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15755085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adu, K. W.</creatorcontrib><creatorcontrib>Gutiérrez, H. R.</creatorcontrib><creatorcontrib>Kim, U. J.</creatorcontrib><creatorcontrib>Sumanasekera, G. U.</creatorcontrib><creatorcontrib>Eklund, P. C.</creatorcontrib><title>Confined Phonons in Si Nanowires</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Raman microprobe studies of long crystalline Si nanowires reveal for the first time the evolution of phonon confinement with wire diameter. The Raman band at ∼520 cm-1 in bulk Si is found to downshift and asymmetrically broaden to lower frequency with decreasing wire diameter D̄, in good agreement with a phenomenological model first proposed by Richter et al. An adjustable parameter (α) is added to the theory that defines the width of the Gaussian phonon confinement function. We find that this parameter is not sensitive to diameter over the range 4−25 nm.</description><subject>Computer Simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization - methods</subject><subject>Exact sciences and technology</subject><subject>Lattice dynamics</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotechnology - methods</subject><subject>Nanotubes - analysis</subject><subject>Nanotubes - chemistry</subject><subject>Nanotubes - ultrastructure</subject><subject>Particle Size</subject><subject>Phonon states and bands, normal modes, and phonon dispersion</subject><subject>Phonons and vibrations in crystal lattices</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Silicon - analysis</subject><subject>Silicon - chemistry</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Structure-Activity Relationship</subject><subject>Vibration</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1LxDAQBuAgiqurB_-A9KLgoTr5atOjLH7BooJ6DpM0xS7dZE22iP_eypbdi6cM4eEd5iXkjMI1BUZvfAdCFUxWe-SISg55UVVsfzsrMSHHKS0AoOISDsmEylJKUPKIZLPgm9a7Onv9DD74lLU-e2uzZ_Thu40unZCDBrvkTsd3Sj7u795nj_n85eFpdjvPkQu-zrkygKqmTgKnVhSyNjUyY6wVXCk6_KKxjWFSMCgNxxKYMLxC4Kzh6Eo-JZeb3FUMX71La71sk3Vdh96FPumilLyUSg7wagNtDClF1-hVbJcYfzQF_VeH3tYx2PMxtDdLV-_keP8ALkaAyWLXRPS2TTtXDDGqrHYObdKL0Ec_dPHPwl9mZnCM</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Adu, K. W.</creator><creator>Gutiérrez, H. R.</creator><creator>Kim, U. J.</creator><creator>Sumanasekera, G. U.</creator><creator>Eklund, P. C.</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050301</creationdate><title>Confined Phonons in Si Nanowires</title><author>Adu, K. W. ; Gutiérrez, H. R. ; Kim, U. J. ; Sumanasekera, G. U. ; Eklund, P. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a343t-38b0a8d1e5031c465dbda2bbcc43881503abcfb254207b3a7024b39a032f3ae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computer Simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization - methods</topic><topic>Exact sciences and technology</topic><topic>Lattice dynamics</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotechnology - methods</topic><topic>Nanotubes - analysis</topic><topic>Nanotubes - chemistry</topic><topic>Nanotubes - ultrastructure</topic><topic>Particle Size</topic><topic>Phonon states and bands, normal modes, and phonon dispersion</topic><topic>Phonons and vibrations in crystal lattices</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Silicon - analysis</topic><topic>Silicon - chemistry</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Structure-Activity Relationship</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adu, K. W.</creatorcontrib><creatorcontrib>Gutiérrez, H. R.</creatorcontrib><creatorcontrib>Kim, U. J.</creatorcontrib><creatorcontrib>Sumanasekera, G. U.</creatorcontrib><creatorcontrib>Eklund, P. C.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adu, K. W.</au><au>Gutiérrez, H. R.</au><au>Kim, U. J.</au><au>Sumanasekera, G. U.</au><au>Eklund, P. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confined Phonons in Si Nanowires</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2005-03-01</date><risdate>2005</risdate><volume>5</volume><issue>3</issue><spage>409</spage><epage>414</epage><pages>409-414</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Raman microprobe studies of long crystalline Si nanowires reveal for the first time the evolution of phonon confinement with wire diameter. The Raman band at ∼520 cm-1 in bulk Si is found to downshift and asymmetrically broaden to lower frequency with decreasing wire diameter D̄, in good agreement with a phenomenological model first proposed by Richter et al. An adjustable parameter (α) is added to the theory that defines the width of the Gaussian phonon confinement function. We find that this parameter is not sensitive to diameter over the range 4−25 nm.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>15755085</pmid><doi>10.1021/nl0486259</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2005-03, Vol.5 (3), p.409-414
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_67537585
source ACS Publications; MEDLINE
subjects Computer Simulation
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Crystallization - methods
Exact sciences and technology
Lattice dynamics
Materials science
Materials Testing
Models, Chemical
Models, Molecular
Molecular Conformation
Nanoscale materials and structures: fabrication and characterization
Nanotechnology - methods
Nanotubes - analysis
Nanotubes - chemistry
Nanotubes - ultrastructure
Particle Size
Phonon states and bands, normal modes, and phonon dispersion
Phonons and vibrations in crystal lattices
Physics
Quantum wires
Silicon - analysis
Silicon - chemistry
Spectrum Analysis, Raman - methods
Structure-Activity Relationship
Vibration
title Confined Phonons in Si Nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confined%20Phonons%20in%20Si%20Nanowires&rft.jtitle=Nano%20letters&rft.au=Adu,%20K.%20W.&rft.date=2005-03-01&rft.volume=5&rft.issue=3&rft.spage=409&rft.epage=414&rft.pages=409-414&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl0486259&rft_dat=%3Cproquest_cross%3E67537585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67537585&rft_id=info:pmid/15755085&rfr_iscdi=true