Confined Phonons in Si Nanowires
Raman microprobe studies of long crystalline Si nanowires reveal for the first time the evolution of phonon confinement with wire diameter. The Raman band at ∼520 cm-1 in bulk Si is found to downshift and asymmetrically broaden to lower frequency with decreasing wire diameter D̄, in good agreement w...
Gespeichert in:
Veröffentlicht in: | Nano letters 2005-03, Vol.5 (3), p.409-414 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 414 |
---|---|
container_issue | 3 |
container_start_page | 409 |
container_title | Nano letters |
container_volume | 5 |
creator | Adu, K. W. Gutiérrez, H. R. Kim, U. J. Sumanasekera, G. U. Eklund, P. C. |
description | Raman microprobe studies of long crystalline Si nanowires reveal for the first time the evolution of phonon confinement with wire diameter. The Raman band at ∼520 cm-1 in bulk Si is found to downshift and asymmetrically broaden to lower frequency with decreasing wire diameter D̄, in good agreement with a phenomenological model first proposed by Richter et al. An adjustable parameter (α) is added to the theory that defines the width of the Gaussian phonon confinement function. We find that this parameter is not sensitive to diameter over the range 4−25 nm. |
doi_str_mv | 10.1021/nl0486259 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67537585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67537585</sourcerecordid><originalsourceid>FETCH-LOGICAL-a343t-38b0a8d1e5031c465dbda2bbcc43881503abcfb254207b3a7024b39a032f3ae73</originalsourceid><addsrcrecordid>eNpt0E1LxDAQBuAgiqurB_-A9KLgoTr5atOjLH7BooJ6DpM0xS7dZE22iP_eypbdi6cM4eEd5iXkjMI1BUZvfAdCFUxWe-SISg55UVVsfzsrMSHHKS0AoOISDsmEylJKUPKIZLPgm9a7Onv9DD74lLU-e2uzZ_Thu40unZCDBrvkTsd3Sj7u795nj_n85eFpdjvPkQu-zrkygKqmTgKnVhSyNjUyY6wVXCk6_KKxjWFSMCgNxxKYMLxC4Kzh6Eo-JZeb3FUMX71La71sk3Vdh96FPumilLyUSg7wagNtDClF1-hVbJcYfzQF_VeH3tYx2PMxtDdLV-_keP8ALkaAyWLXRPS2TTtXDDGqrHYObdKL0Ec_dPHPwl9mZnCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67537585</pqid></control><display><type>article</type><title>Confined Phonons in Si Nanowires</title><source>ACS Publications</source><source>MEDLINE</source><creator>Adu, K. W. ; Gutiérrez, H. R. ; Kim, U. J. ; Sumanasekera, G. U. ; Eklund, P. C.</creator><creatorcontrib>Adu, K. W. ; Gutiérrez, H. R. ; Kim, U. J. ; Sumanasekera, G. U. ; Eklund, P. C.</creatorcontrib><description>Raman microprobe studies of long crystalline Si nanowires reveal for the first time the evolution of phonon confinement with wire diameter. The Raman band at ∼520 cm-1 in bulk Si is found to downshift and asymmetrically broaden to lower frequency with decreasing wire diameter D̄, in good agreement with a phenomenological model first proposed by Richter et al. An adjustable parameter (α) is added to the theory that defines the width of the Gaussian phonon confinement function. We find that this parameter is not sensitive to diameter over the range 4−25 nm.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl0486259</identifier><identifier>PMID: 15755085</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Computer Simulation ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystallization - methods ; Exact sciences and technology ; Lattice dynamics ; Materials science ; Materials Testing ; Models, Chemical ; Models, Molecular ; Molecular Conformation ; Nanoscale materials and structures: fabrication and characterization ; Nanotechnology - methods ; Nanotubes - analysis ; Nanotubes - chemistry ; Nanotubes - ultrastructure ; Particle Size ; Phonon states and bands, normal modes, and phonon dispersion ; Phonons and vibrations in crystal lattices ; Physics ; Quantum wires ; Silicon - analysis ; Silicon - chemistry ; Spectrum Analysis, Raman - methods ; Structure-Activity Relationship ; Vibration</subject><ispartof>Nano letters, 2005-03, Vol.5 (3), p.409-414</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a343t-38b0a8d1e5031c465dbda2bbcc43881503abcfb254207b3a7024b39a032f3ae73</citedby><cites>FETCH-LOGICAL-a343t-38b0a8d1e5031c465dbda2bbcc43881503abcfb254207b3a7024b39a032f3ae73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl0486259$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl0486259$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16625879$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15755085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adu, K. W.</creatorcontrib><creatorcontrib>Gutiérrez, H. R.</creatorcontrib><creatorcontrib>Kim, U. J.</creatorcontrib><creatorcontrib>Sumanasekera, G. U.</creatorcontrib><creatorcontrib>Eklund, P. C.</creatorcontrib><title>Confined Phonons in Si Nanowires</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Raman microprobe studies of long crystalline Si nanowires reveal for the first time the evolution of phonon confinement with wire diameter. The Raman band at ∼520 cm-1 in bulk Si is found to downshift and asymmetrically broaden to lower frequency with decreasing wire diameter D̄, in good agreement with a phenomenological model first proposed by Richter et al. An adjustable parameter (α) is added to the theory that defines the width of the Gaussian phonon confinement function. We find that this parameter is not sensitive to diameter over the range 4−25 nm.</description><subject>Computer Simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization - methods</subject><subject>Exact sciences and technology</subject><subject>Lattice dynamics</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotechnology - methods</subject><subject>Nanotubes - analysis</subject><subject>Nanotubes - chemistry</subject><subject>Nanotubes - ultrastructure</subject><subject>Particle Size</subject><subject>Phonon states and bands, normal modes, and phonon dispersion</subject><subject>Phonons and vibrations in crystal lattices</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Silicon - analysis</subject><subject>Silicon - chemistry</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Structure-Activity Relationship</subject><subject>Vibration</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1LxDAQBuAgiqurB_-A9KLgoTr5atOjLH7BooJ6DpM0xS7dZE22iP_eypbdi6cM4eEd5iXkjMI1BUZvfAdCFUxWe-SISg55UVVsfzsrMSHHKS0AoOISDsmEylJKUPKIZLPgm9a7Onv9DD74lLU-e2uzZ_Thu40unZCDBrvkTsd3Sj7u795nj_n85eFpdjvPkQu-zrkygKqmTgKnVhSyNjUyY6wVXCk6_KKxjWFSMCgNxxKYMLxC4Kzh6Eo-JZeb3FUMX71La71sk3Vdh96FPumilLyUSg7wagNtDClF1-hVbJcYfzQF_VeH3tYx2PMxtDdLV-_keP8ALkaAyWLXRPS2TTtXDDGqrHYObdKL0Ec_dPHPwl9mZnCM</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Adu, K. W.</creator><creator>Gutiérrez, H. R.</creator><creator>Kim, U. J.</creator><creator>Sumanasekera, G. U.</creator><creator>Eklund, P. C.</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050301</creationdate><title>Confined Phonons in Si Nanowires</title><author>Adu, K. W. ; Gutiérrez, H. R. ; Kim, U. J. ; Sumanasekera, G. U. ; Eklund, P. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a343t-38b0a8d1e5031c465dbda2bbcc43881503abcfb254207b3a7024b39a032f3ae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computer Simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization - methods</topic><topic>Exact sciences and technology</topic><topic>Lattice dynamics</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotechnology - methods</topic><topic>Nanotubes - analysis</topic><topic>Nanotubes - chemistry</topic><topic>Nanotubes - ultrastructure</topic><topic>Particle Size</topic><topic>Phonon states and bands, normal modes, and phonon dispersion</topic><topic>Phonons and vibrations in crystal lattices</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Silicon - analysis</topic><topic>Silicon - chemistry</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Structure-Activity Relationship</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adu, K. W.</creatorcontrib><creatorcontrib>Gutiérrez, H. R.</creatorcontrib><creatorcontrib>Kim, U. J.</creatorcontrib><creatorcontrib>Sumanasekera, G. U.</creatorcontrib><creatorcontrib>Eklund, P. C.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adu, K. W.</au><au>Gutiérrez, H. R.</au><au>Kim, U. J.</au><au>Sumanasekera, G. U.</au><au>Eklund, P. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confined Phonons in Si Nanowires</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2005-03-01</date><risdate>2005</risdate><volume>5</volume><issue>3</issue><spage>409</spage><epage>414</epage><pages>409-414</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Raman microprobe studies of long crystalline Si nanowires reveal for the first time the evolution of phonon confinement with wire diameter. The Raman band at ∼520 cm-1 in bulk Si is found to downshift and asymmetrically broaden to lower frequency with decreasing wire diameter D̄, in good agreement with a phenomenological model first proposed by Richter et al. An adjustable parameter (α) is added to the theory that defines the width of the Gaussian phonon confinement function. We find that this parameter is not sensitive to diameter over the range 4−25 nm.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>15755085</pmid><doi>10.1021/nl0486259</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2005-03, Vol.5 (3), p.409-414 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_67537585 |
source | ACS Publications; MEDLINE |
subjects | Computer Simulation Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Crystallization - methods Exact sciences and technology Lattice dynamics Materials science Materials Testing Models, Chemical Models, Molecular Molecular Conformation Nanoscale materials and structures: fabrication and characterization Nanotechnology - methods Nanotubes - analysis Nanotubes - chemistry Nanotubes - ultrastructure Particle Size Phonon states and bands, normal modes, and phonon dispersion Phonons and vibrations in crystal lattices Physics Quantum wires Silicon - analysis Silicon - chemistry Spectrum Analysis, Raman - methods Structure-Activity Relationship Vibration |
title | Confined Phonons in Si Nanowires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confined%20Phonons%20in%20Si%20Nanowires&rft.jtitle=Nano%20letters&rft.au=Adu,%20K.%20W.&rft.date=2005-03-01&rft.volume=5&rft.issue=3&rft.spage=409&rft.epage=414&rft.pages=409-414&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl0486259&rft_dat=%3Cproquest_cross%3E67537585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67537585&rft_id=info:pmid/15755085&rfr_iscdi=true |