Beta-arrestin-dependent spontaneous alpha1a-adrenoceptor endocytosis causes intracellular transportation of alpha-blockers via recycling compartments

The antagonist ligand BODIPY-FL-prazosin (QAPB) fluoresces when bound to bovine alpha(1a)-adrenoceptors (ARs). Data indicate that the receptor-ligand complex is spontaneously internalized by beta-arrestin-dependent endocytosis. Internalization of the ligand did not occur in beta-arrestin-deficient c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmacology 2005-04, Vol.67 (4), p.992-1004
Hauptverfasser: Pediani, John D, Colston, Janet F, Caldwell, Darren, Milligan, Graeme, Daly, Craig J, McGrath, John C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1004
container_issue 4
container_start_page 992
container_title Molecular pharmacology
container_volume 67
creator Pediani, John D
Colston, Janet F
Caldwell, Darren
Milligan, Graeme
Daly, Craig J
McGrath, John C
description The antagonist ligand BODIPY-FL-prazosin (QAPB) fluoresces when bound to bovine alpha(1a)-adrenoceptors (ARs). Data indicate that the receptor-ligand complex is spontaneously internalized by beta-arrestin-dependent endocytosis. Internalization of the ligand did not occur in beta-arrestin-deficient cells; was blocked or reversed by another alpha(1) ligand, phentolamine, indicating it to reflect binding to the orthosteric recognition site; and was prevented by blocking clathrin-mediated endocytosis. The ligand showed rapid, diffuse, low-intensity, surface binding, superseded by punctate intracellular binding that developed to equilibrium in 50 to 60 min and was reversible on ligand removal, indicating a dynamic equilibrium. In cells expressing a human alpha(1a)-AR-enhanced green fluorescent protein (EGFP) 2 fusion protein, BODIPY-R-558/568-prazosin (RQAPB) colocalized with the fusion, indicating that the ligand gained access to all compartments containing the receptor, and, conversely, that the receptor has affinity for the ligand at all of these sites. The distribution of QAPB binding sites was similar for receptors with or without EGFP2, validating the fusion protein as an indicator of receptor location. The ligand partially colocalized with beta-arrestin in recycling and late endosomes, indicating receptor transit without destruction. Organelles containing receptors showed considerable movement consistent with a transportation function. This was absent in beta-arrestin-deficient cells, indicating that both constitutive receptor internalization and subsequent intracellular transportation are beta-arrestin-dependent. Calculations of relative receptor number indicate that at steady state, less than 30% of receptors reside on the cell surface and that recycling is rapid. We conclude that alpha(1a)-ARs recycle rapidly by an agonist-independent, constitutive, beta-arrestin-dependent process and that this can transport "alpha-blockers" into cells carrying these receptors.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67535316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67535316</sourcerecordid><originalsourceid>FETCH-LOGICAL-p541-8cbeea19ae32fa99367a5b25887733f54858676e5efb4494f5b5578f74506ffb3</originalsourceid><addsrcrecordid>eNo1kLtOxDAQRVOA2GXhF5ArukhJHD9SwoqXtBLNFnTRxBmDIbGN7SDth_C_GC1UM8XRuTP3pFhXVcNL2bGXVXEe43tV1S2T1VmxqhlvuGD1uvi-xQQlhIAxGVuO6NGOaBOJ3tkEFt0SCUz-DeqMjQGtU-iTCyRzTh2SiyYSBUvESIxNARRO0zJBIHm32RISJOMscfroKYfJqQ8MkXwZIAHVQU3GvhLlZg8hzTk8XhSnGqaIl39zU-zv7_bbx3L3_PC0vdmVnrV1KdWACHUHSBsNXUe5ADY0TEohKNWslUxywZGhHtq2azUbGBNSi5ZVXOuBborro9YH97nkBvrZxN_7j3_3uSLKaM0zePUHLsOMY--DmSEc-v8e6Q9bunNi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67535316</pqid></control><display><type>article</type><title>Beta-arrestin-dependent spontaneous alpha1a-adrenoceptor endocytosis causes intracellular transportation of alpha-blockers via recycling compartments</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Pediani, John D ; Colston, Janet F ; Caldwell, Darren ; Milligan, Graeme ; Daly, Craig J ; McGrath, John C</creator><creatorcontrib>Pediani, John D ; Colston, Janet F ; Caldwell, Darren ; Milligan, Graeme ; Daly, Craig J ; McGrath, John C</creatorcontrib><description>The antagonist ligand BODIPY-FL-prazosin (QAPB) fluoresces when bound to bovine alpha(1a)-adrenoceptors (ARs). Data indicate that the receptor-ligand complex is spontaneously internalized by beta-arrestin-dependent endocytosis. Internalization of the ligand did not occur in beta-arrestin-deficient cells; was blocked or reversed by another alpha(1) ligand, phentolamine, indicating it to reflect binding to the orthosteric recognition site; and was prevented by blocking clathrin-mediated endocytosis. The ligand showed rapid, diffuse, low-intensity, surface binding, superseded by punctate intracellular binding that developed to equilibrium in 50 to 60 min and was reversible on ligand removal, indicating a dynamic equilibrium. In cells expressing a human alpha(1a)-AR-enhanced green fluorescent protein (EGFP) 2 fusion protein, BODIPY-R-558/568-prazosin (RQAPB) colocalized with the fusion, indicating that the ligand gained access to all compartments containing the receptor, and, conversely, that the receptor has affinity for the ligand at all of these sites. The distribution of QAPB binding sites was similar for receptors with or without EGFP2, validating the fusion protein as an indicator of receptor location. The ligand partially colocalized with beta-arrestin in recycling and late endosomes, indicating receptor transit without destruction. Organelles containing receptors showed considerable movement consistent with a transportation function. This was absent in beta-arrestin-deficient cells, indicating that both constitutive receptor internalization and subsequent intracellular transportation are beta-arrestin-dependent. Calculations of relative receptor number indicate that at steady state, less than 30% of receptors reside on the cell surface and that recycling is rapid. We conclude that alpha(1a)-ARs recycle rapidly by an agonist-independent, constitutive, beta-arrestin-dependent process and that this can transport "alpha-blockers" into cells carrying these receptors.</description><identifier>ISSN: 0026-895X</identifier><identifier>PMID: 15626751</identifier><language>eng</language><publisher>United States</publisher><subject>Adrenergic alpha-Antagonists - metabolism ; Animals ; Arrestins - physiology ; beta-Arrestins ; Biological Transport ; Cells, Cultured ; Endocytosis ; Endosomes - metabolism ; Humans ; Phentolamine - pharmacology ; Prazosin - metabolism ; Rats ; Receptors, Adrenergic, alpha-1 - metabolism</subject><ispartof>Molecular pharmacology, 2005-04, Vol.67 (4), p.992-1004</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15626751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pediani, John D</creatorcontrib><creatorcontrib>Colston, Janet F</creatorcontrib><creatorcontrib>Caldwell, Darren</creatorcontrib><creatorcontrib>Milligan, Graeme</creatorcontrib><creatorcontrib>Daly, Craig J</creatorcontrib><creatorcontrib>McGrath, John C</creatorcontrib><title>Beta-arrestin-dependent spontaneous alpha1a-adrenoceptor endocytosis causes intracellular transportation of alpha-blockers via recycling compartments</title><title>Molecular pharmacology</title><addtitle>Mol Pharmacol</addtitle><description>The antagonist ligand BODIPY-FL-prazosin (QAPB) fluoresces when bound to bovine alpha(1a)-adrenoceptors (ARs). Data indicate that the receptor-ligand complex is spontaneously internalized by beta-arrestin-dependent endocytosis. Internalization of the ligand did not occur in beta-arrestin-deficient cells; was blocked or reversed by another alpha(1) ligand, phentolamine, indicating it to reflect binding to the orthosteric recognition site; and was prevented by blocking clathrin-mediated endocytosis. The ligand showed rapid, diffuse, low-intensity, surface binding, superseded by punctate intracellular binding that developed to equilibrium in 50 to 60 min and was reversible on ligand removal, indicating a dynamic equilibrium. In cells expressing a human alpha(1a)-AR-enhanced green fluorescent protein (EGFP) 2 fusion protein, BODIPY-R-558/568-prazosin (RQAPB) colocalized with the fusion, indicating that the ligand gained access to all compartments containing the receptor, and, conversely, that the receptor has affinity for the ligand at all of these sites. The distribution of QAPB binding sites was similar for receptors with or without EGFP2, validating the fusion protein as an indicator of receptor location. The ligand partially colocalized with beta-arrestin in recycling and late endosomes, indicating receptor transit without destruction. Organelles containing receptors showed considerable movement consistent with a transportation function. This was absent in beta-arrestin-deficient cells, indicating that both constitutive receptor internalization and subsequent intracellular transportation are beta-arrestin-dependent. Calculations of relative receptor number indicate that at steady state, less than 30% of receptors reside on the cell surface and that recycling is rapid. We conclude that alpha(1a)-ARs recycle rapidly by an agonist-independent, constitutive, beta-arrestin-dependent process and that this can transport "alpha-blockers" into cells carrying these receptors.</description><subject>Adrenergic alpha-Antagonists - metabolism</subject><subject>Animals</subject><subject>Arrestins - physiology</subject><subject>beta-Arrestins</subject><subject>Biological Transport</subject><subject>Cells, Cultured</subject><subject>Endocytosis</subject><subject>Endosomes - metabolism</subject><subject>Humans</subject><subject>Phentolamine - pharmacology</subject><subject>Prazosin - metabolism</subject><subject>Rats</subject><subject>Receptors, Adrenergic, alpha-1 - metabolism</subject><issn>0026-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kLtOxDAQRVOA2GXhF5ArukhJHD9SwoqXtBLNFnTRxBmDIbGN7SDth_C_GC1UM8XRuTP3pFhXVcNL2bGXVXEe43tV1S2T1VmxqhlvuGD1uvi-xQQlhIAxGVuO6NGOaBOJ3tkEFt0SCUz-DeqMjQGtU-iTCyRzTh2SiyYSBUvESIxNARRO0zJBIHm32RISJOMscfroKYfJqQ8MkXwZIAHVQU3GvhLlZg8hzTk8XhSnGqaIl39zU-zv7_bbx3L3_PC0vdmVnrV1KdWACHUHSBsNXUe5ADY0TEohKNWslUxywZGhHtq2azUbGBNSi5ZVXOuBborro9YH97nkBvrZxN_7j3_3uSLKaM0zePUHLsOMY--DmSEc-v8e6Q9bunNi</recordid><startdate>200504</startdate><enddate>200504</enddate><creator>Pediani, John D</creator><creator>Colston, Janet F</creator><creator>Caldwell, Darren</creator><creator>Milligan, Graeme</creator><creator>Daly, Craig J</creator><creator>McGrath, John C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200504</creationdate><title>Beta-arrestin-dependent spontaneous alpha1a-adrenoceptor endocytosis causes intracellular transportation of alpha-blockers via recycling compartments</title><author>Pediani, John D ; Colston, Janet F ; Caldwell, Darren ; Milligan, Graeme ; Daly, Craig J ; McGrath, John C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p541-8cbeea19ae32fa99367a5b25887733f54858676e5efb4494f5b5578f74506ffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adrenergic alpha-Antagonists - metabolism</topic><topic>Animals</topic><topic>Arrestins - physiology</topic><topic>beta-Arrestins</topic><topic>Biological Transport</topic><topic>Cells, Cultured</topic><topic>Endocytosis</topic><topic>Endosomes - metabolism</topic><topic>Humans</topic><topic>Phentolamine - pharmacology</topic><topic>Prazosin - metabolism</topic><topic>Rats</topic><topic>Receptors, Adrenergic, alpha-1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pediani, John D</creatorcontrib><creatorcontrib>Colston, Janet F</creatorcontrib><creatorcontrib>Caldwell, Darren</creatorcontrib><creatorcontrib>Milligan, Graeme</creatorcontrib><creatorcontrib>Daly, Craig J</creatorcontrib><creatorcontrib>McGrath, John C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pediani, John D</au><au>Colston, Janet F</au><au>Caldwell, Darren</au><au>Milligan, Graeme</au><au>Daly, Craig J</au><au>McGrath, John C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beta-arrestin-dependent spontaneous alpha1a-adrenoceptor endocytosis causes intracellular transportation of alpha-blockers via recycling compartments</atitle><jtitle>Molecular pharmacology</jtitle><addtitle>Mol Pharmacol</addtitle><date>2005-04</date><risdate>2005</risdate><volume>67</volume><issue>4</issue><spage>992</spage><epage>1004</epage><pages>992-1004</pages><issn>0026-895X</issn><abstract>The antagonist ligand BODIPY-FL-prazosin (QAPB) fluoresces when bound to bovine alpha(1a)-adrenoceptors (ARs). Data indicate that the receptor-ligand complex is spontaneously internalized by beta-arrestin-dependent endocytosis. Internalization of the ligand did not occur in beta-arrestin-deficient cells; was blocked or reversed by another alpha(1) ligand, phentolamine, indicating it to reflect binding to the orthosteric recognition site; and was prevented by blocking clathrin-mediated endocytosis. The ligand showed rapid, diffuse, low-intensity, surface binding, superseded by punctate intracellular binding that developed to equilibrium in 50 to 60 min and was reversible on ligand removal, indicating a dynamic equilibrium. In cells expressing a human alpha(1a)-AR-enhanced green fluorescent protein (EGFP) 2 fusion protein, BODIPY-R-558/568-prazosin (RQAPB) colocalized with the fusion, indicating that the ligand gained access to all compartments containing the receptor, and, conversely, that the receptor has affinity for the ligand at all of these sites. The distribution of QAPB binding sites was similar for receptors with or without EGFP2, validating the fusion protein as an indicator of receptor location. The ligand partially colocalized with beta-arrestin in recycling and late endosomes, indicating receptor transit without destruction. Organelles containing receptors showed considerable movement consistent with a transportation function. This was absent in beta-arrestin-deficient cells, indicating that both constitutive receptor internalization and subsequent intracellular transportation are beta-arrestin-dependent. Calculations of relative receptor number indicate that at steady state, less than 30% of receptors reside on the cell surface and that recycling is rapid. We conclude that alpha(1a)-ARs recycle rapidly by an agonist-independent, constitutive, beta-arrestin-dependent process and that this can transport "alpha-blockers" into cells carrying these receptors.</abstract><cop>United States</cop><pmid>15626751</pmid><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-895X
ispartof Molecular pharmacology, 2005-04, Vol.67 (4), p.992-1004
issn 0026-895X
language eng
recordid cdi_proquest_miscellaneous_67535316
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Adrenergic alpha-Antagonists - metabolism
Animals
Arrestins - physiology
beta-Arrestins
Biological Transport
Cells, Cultured
Endocytosis
Endosomes - metabolism
Humans
Phentolamine - pharmacology
Prazosin - metabolism
Rats
Receptors, Adrenergic, alpha-1 - metabolism
title Beta-arrestin-dependent spontaneous alpha1a-adrenoceptor endocytosis causes intracellular transportation of alpha-blockers via recycling compartments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beta-arrestin-dependent%20spontaneous%20alpha1a-adrenoceptor%20endocytosis%20causes%20intracellular%20transportation%20of%20alpha-blockers%20via%20recycling%20compartments&rft.jtitle=Molecular%20pharmacology&rft.au=Pediani,%20John%20D&rft.date=2005-04&rft.volume=67&rft.issue=4&rft.spage=992&rft.epage=1004&rft.pages=992-1004&rft.issn=0026-895X&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E67535316%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67535316&rft_id=info:pmid/15626751&rfr_iscdi=true