Amino acid content of recombinant proteins influences the metabolic burden response

Recombinant protein production in Escherichia coli often results in a dramatic cellular stress response best characterized by a decrease in overall cell fitness. We determined that the primary sequence (the amino acid sequence) of the recombinant protein alone plays an important role in mitigating t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2005-04, Vol.90 (1), p.116-126
Hauptverfasser: Bonomo, Jeanne, Gill, Ryan T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue 1
container_start_page 116
container_title Biotechnology and bioengineering
container_volume 90
creator Bonomo, Jeanne
Gill, Ryan T.
description Recombinant protein production in Escherichia coli often results in a dramatic cellular stress response best characterized by a decrease in overall cell fitness. We determined that the primary sequence (the amino acid sequence) of the recombinant protein alone plays an important role in mitigating this response. To do so, we created two polypeptides, modeled after the 39‐40 amino acid Defensin class of proteins, which contained exclusively the five least (PepAA; His, Trp, Tyr, Phe, Met), or most (PepCO: Ala, Glu, Gln, Asp, Asn) abundant amino acids in E. coli. We determined that overexpression of PepAA resulted in a drastic decrease in growth rate compared to overexpression of PepCO, our model Defensin protein MGD‐1, or the 26 amino acid polypeptide contained within the pET‐3d vector backbone. We further determined, using Affymetrix E. coli gene chips, that differences among the whole‐genome transcriptional responses of these model systems were best characterized by altered expression of genes whose products are involved in translation, transport, or metabolic functions as opposed to stress response genes. Based on these results, we confirmed that translation efficiency was significantly reduced in cells overexpressing PepAA compared with the other model polypeptides evaluated. © 2005 Wiley Periodicals, Inc.
doi_str_mv 10.1002/bit.20436
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67528453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>820998471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5526-9149ce12588392640113e5a5bb837008249d7ab19f0313b1676437e34901ef6a3</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxYModq0--AVkEBR8mDY3mSSTx1q0LbQqdMW-hUz2DqbOJNtkBu23N9tdLRTEp8uF3zn3zyHkJdADoJQddn46YLTh8hFZANWqpkzTx2RBKZU1F5rtkWc5X5dWtVI-JXsgFJcg2YJcHo0-xMo6v6pcDBOGqYp9ldDFsfPBlnad4oQ-5MqHfpgxOMzV9B2rESfbxcG7qpvTCkMR5XUMGZ-TJ70dMr7Y1X3y9eOH5fFpff755Oz46Lx2QjBZa2i0Q2CibblmsqEAHIUVXddyRWnLGr1StgPdUw68A6lkwxXyRlPAXlq-T95ufcuGNzPmyYw-OxwGGzDO2UglWNsI_l8QtFJAhSjg6wfgdZxTKEcYBlxJJmDj9m4LuRRzTtibdfKjTbcGqNnkYUoe5i6Pwr7aGc7diKt7chdAAd7sAJudHfpkg_P5npOS01ZvjA633E8_4O2_J5r3Z8s_o-utwucJf_1V2PSjPIYrYb59OjH6YgmXX664ueK_ATZ_rhY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213762513</pqid></control><display><type>article</type><title>Amino acid content of recombinant proteins influences the metabolic burden response</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>Bonomo, Jeanne ; Gill, Ryan T.</creator><creatorcontrib>Bonomo, Jeanne ; Gill, Ryan T.</creatorcontrib><description>Recombinant protein production in Escherichia coli often results in a dramatic cellular stress response best characterized by a decrease in overall cell fitness. We determined that the primary sequence (the amino acid sequence) of the recombinant protein alone plays an important role in mitigating this response. To do so, we created two polypeptides, modeled after the 39‐40 amino acid Defensin class of proteins, which contained exclusively the five least (PepAA; His, Trp, Tyr, Phe, Met), or most (PepCO: Ala, Glu, Gln, Asp, Asn) abundant amino acids in E. coli. We determined that overexpression of PepAA resulted in a drastic decrease in growth rate compared to overexpression of PepCO, our model Defensin protein MGD‐1, or the 26 amino acid polypeptide contained within the pET‐3d vector backbone. We further determined, using Affymetrix E. coli gene chips, that differences among the whole‐genome transcriptional responses of these model systems were best characterized by altered expression of genes whose products are involved in translation, transport, or metabolic functions as opposed to stress response genes. Based on these results, we confirmed that translation efficiency was significantly reduced in cells overexpressing PepAA compared with the other model polypeptides evaluated. © 2005 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.20436</identifier><identifier>PMID: 15736162</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Amino Acid Sequence ; Amino acids ; Amino Acids - biosynthesis ; Amino Acids - chemistry ; Amino Acids - genetics ; Bacteria ; Biological and medical sciences ; Biotechnology ; Defensins - biosynthesis ; Defensins - chemistry ; Defensins - genetics ; Escherichia coli ; Escherichia coli - chemistry ; Escherichia coli - physiology ; Escherichia coli Proteins - biosynthesis ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Bacterial - physiology ; Genetic engineering ; Genetic technics ; metabolic burden ; Metabolism ; Methods. Procedures. Technologies ; Modification of gene expression level ; Molecular Sequence Data ; Oxidative Stress - physiology ; Protein Engineering - methods ; Proteins ; recombinant protein production ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Structure-Activity Relationship ; transcriptional profiling ; translation efficiency</subject><ispartof>Biotechnology and bioengineering, 2005-04, Vol.90 (1), p.116-126</ispartof><rights>Copyright © 2005 Wiley Periodicals, Inc.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright (c) 2005 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Apr 5, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5526-9149ce12588392640113e5a5bb837008249d7ab19f0313b1676437e34901ef6a3</citedby><cites>FETCH-LOGICAL-c5526-9149ce12588392640113e5a5bb837008249d7ab19f0313b1676437e34901ef6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.20436$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.20436$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16630896$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15736162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonomo, Jeanne</creatorcontrib><creatorcontrib>Gill, Ryan T.</creatorcontrib><title>Amino acid content of recombinant proteins influences the metabolic burden response</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Recombinant protein production in Escherichia coli often results in a dramatic cellular stress response best characterized by a decrease in overall cell fitness. We determined that the primary sequence (the amino acid sequence) of the recombinant protein alone plays an important role in mitigating this response. To do so, we created two polypeptides, modeled after the 39‐40 amino acid Defensin class of proteins, which contained exclusively the five least (PepAA; His, Trp, Tyr, Phe, Met), or most (PepCO: Ala, Glu, Gln, Asp, Asn) abundant amino acids in E. coli. We determined that overexpression of PepAA resulted in a drastic decrease in growth rate compared to overexpression of PepCO, our model Defensin protein MGD‐1, or the 26 amino acid polypeptide contained within the pET‐3d vector backbone. We further determined, using Affymetrix E. coli gene chips, that differences among the whole‐genome transcriptional responses of these model systems were best characterized by altered expression of genes whose products are involved in translation, transport, or metabolic functions as opposed to stress response genes. Based on these results, we confirmed that translation efficiency was significantly reduced in cells overexpressing PepAA compared with the other model polypeptides evaluated. © 2005 Wiley Periodicals, Inc.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Amino Acids - biosynthesis</subject><subject>Amino Acids - chemistry</subject><subject>Amino Acids - genetics</subject><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Defensins - biosynthesis</subject><subject>Defensins - chemistry</subject><subject>Defensins - genetics</subject><subject>Escherichia coli</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - physiology</subject><subject>Escherichia coli Proteins - biosynthesis</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial - physiology</subject><subject>Genetic engineering</subject><subject>Genetic technics</subject><subject>metabolic burden</subject><subject>Metabolism</subject><subject>Methods. Procedures. Technologies</subject><subject>Modification of gene expression level</subject><subject>Molecular Sequence Data</subject><subject>Oxidative Stress - physiology</subject><subject>Protein Engineering - methods</subject><subject>Proteins</subject><subject>recombinant protein production</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Structure-Activity Relationship</subject><subject>transcriptional profiling</subject><subject>translation efficiency</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV9rFDEUxYModq0--AVkEBR8mDY3mSSTx1q0LbQqdMW-hUz2DqbOJNtkBu23N9tdLRTEp8uF3zn3zyHkJdADoJQddn46YLTh8hFZANWqpkzTx2RBKZU1F5rtkWc5X5dWtVI-JXsgFJcg2YJcHo0-xMo6v6pcDBOGqYp9ldDFsfPBlnad4oQ-5MqHfpgxOMzV9B2rESfbxcG7qpvTCkMR5XUMGZ-TJ70dMr7Y1X3y9eOH5fFpff755Oz46Lx2QjBZa2i0Q2CibblmsqEAHIUVXddyRWnLGr1StgPdUw68A6lkwxXyRlPAXlq-T95ufcuGNzPmyYw-OxwGGzDO2UglWNsI_l8QtFJAhSjg6wfgdZxTKEcYBlxJJmDj9m4LuRRzTtibdfKjTbcGqNnkYUoe5i6Pwr7aGc7diKt7chdAAd7sAJudHfpkg_P5npOS01ZvjA633E8_4O2_J5r3Z8s_o-utwucJf_1V2PSjPIYrYb59OjH6YgmXX664ueK_ATZ_rhY</recordid><startdate>20050405</startdate><enddate>20050405</enddate><creator>Bonomo, Jeanne</creator><creator>Gill, Ryan T.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7QL</scope><scope>7X8</scope></search><sort><creationdate>20050405</creationdate><title>Amino acid content of recombinant proteins influences the metabolic burden response</title><author>Bonomo, Jeanne ; Gill, Ryan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5526-9149ce12588392640113e5a5bb837008249d7ab19f0313b1676437e34901ef6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Amino Acids - biosynthesis</topic><topic>Amino Acids - chemistry</topic><topic>Amino Acids - genetics</topic><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Defensins - biosynthesis</topic><topic>Defensins - chemistry</topic><topic>Defensins - genetics</topic><topic>Escherichia coli</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - physiology</topic><topic>Escherichia coli Proteins - biosynthesis</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial - physiology</topic><topic>Genetic engineering</topic><topic>Genetic technics</topic><topic>metabolic burden</topic><topic>Metabolism</topic><topic>Methods. Procedures. Technologies</topic><topic>Modification of gene expression level</topic><topic>Molecular Sequence Data</topic><topic>Oxidative Stress - physiology</topic><topic>Protein Engineering - methods</topic><topic>Proteins</topic><topic>recombinant protein production</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Structure-Activity Relationship</topic><topic>transcriptional profiling</topic><topic>translation efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonomo, Jeanne</creatorcontrib><creatorcontrib>Gill, Ryan T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonomo, Jeanne</au><au>Gill, Ryan T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amino acid content of recombinant proteins influences the metabolic burden response</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2005-04-05</date><risdate>2005</risdate><volume>90</volume><issue>1</issue><spage>116</spage><epage>126</epage><pages>116-126</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Recombinant protein production in Escherichia coli often results in a dramatic cellular stress response best characterized by a decrease in overall cell fitness. We determined that the primary sequence (the amino acid sequence) of the recombinant protein alone plays an important role in mitigating this response. To do so, we created two polypeptides, modeled after the 39‐40 amino acid Defensin class of proteins, which contained exclusively the five least (PepAA; His, Trp, Tyr, Phe, Met), or most (PepCO: Ala, Glu, Gln, Asp, Asn) abundant amino acids in E. coli. We determined that overexpression of PepAA resulted in a drastic decrease in growth rate compared to overexpression of PepCO, our model Defensin protein MGD‐1, or the 26 amino acid polypeptide contained within the pET‐3d vector backbone. We further determined, using Affymetrix E. coli gene chips, that differences among the whole‐genome transcriptional responses of these model systems were best characterized by altered expression of genes whose products are involved in translation, transport, or metabolic functions as opposed to stress response genes. Based on these results, we confirmed that translation efficiency was significantly reduced in cells overexpressing PepAA compared with the other model polypeptides evaluated. © 2005 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15736162</pmid><doi>10.1002/bit.20436</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2005-04, Vol.90 (1), p.116-126
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_67528453
source MEDLINE; Wiley Online Library
subjects Amino Acid Sequence
Amino acids
Amino Acids - biosynthesis
Amino Acids - chemistry
Amino Acids - genetics
Bacteria
Biological and medical sciences
Biotechnology
Defensins - biosynthesis
Defensins - chemistry
Defensins - genetics
Escherichia coli
Escherichia coli - chemistry
Escherichia coli - physiology
Escherichia coli Proteins - biosynthesis
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Regulation, Bacterial - physiology
Genetic engineering
Genetic technics
metabolic burden
Metabolism
Methods. Procedures. Technologies
Modification of gene expression level
Molecular Sequence Data
Oxidative Stress - physiology
Protein Engineering - methods
Proteins
recombinant protein production
Recombinant Proteins - biosynthesis
Recombinant Proteins - chemistry
Structure-Activity Relationship
transcriptional profiling
translation efficiency
title Amino acid content of recombinant proteins influences the metabolic burden response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amino%20acid%20content%20of%20recombinant%20proteins%20influences%20the%20metabolic%20burden%20response&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Bonomo,%20Jeanne&rft.date=2005-04-05&rft.volume=90&rft.issue=1&rft.spage=116&rft.epage=126&rft.pages=116-126&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.20436&rft_dat=%3Cproquest_cross%3E820998471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213762513&rft_id=info:pmid/15736162&rfr_iscdi=true