Nanostructural analysis by atomic force microscopy followed by light microscopy on the same archival slide

Integrated information on ultrastructural surface texture and chemistry increasingly plays a role in the biomedical sciences. Light microscopy provides access to biochemical data by the application of dyes. Ultrastructural representation of the surface structure of tissues, cells, or macromolecules...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy research and technique 2009-07, Vol.72 (7), p.471-481
Hauptverfasser: Wagner, Mathias, Kaehler, Dirk, Anhenn, Olaf, Betz, Thomas, Awad, Sally, Shamaa, Ali, Theegarten, Dirk, Linder, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 481
container_issue 7
container_start_page 471
container_title Microscopy research and technique
container_volume 72
creator Wagner, Mathias
Kaehler, Dirk
Anhenn, Olaf
Betz, Thomas
Awad, Sally
Shamaa, Ali
Theegarten, Dirk
Linder, Roland
description Integrated information on ultrastructural surface texture and chemistry increasingly plays a role in the biomedical sciences. Light microscopy provides access to biochemical data by the application of dyes. Ultrastructural representation of the surface structure of tissues, cells, or macromolecules can be obtained by scanning electron microscopy (SEM). However, SEM often requires gold or coal coating of biological samples, which makes a combined examination by light microscopy and SEM difficult. Conventional histochemical staining methods are not easily applicable to biological material subsequent to such treatment. Atomic force microscopy (AFM) gives access to surface textures down to ultrastructural dimensions without previous coating of the sample. A combination of AFM with conventional histochemical staining protocols for light microscopy on a single slide is therefore presented. Unstained cores were examined using AFM (tapping mode) and subsequently stained histochemically. The images obtained by AFM were compared with the results of histochemistry. AFM technology did not interfere with any of the histochemical staining protocols. Ultrastructurally analyzed regions could be identified in light microscopy and histochemical properties of ultrastructurally determined regions could be seen. AFM‐generated ultrastructural information with subsequent staining gives way to novel findings in the biomedical sciences. Microsc. Res. Tech., 2009. © 2009 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jemt.20691
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67524475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67524475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-dab34c5a3c1b64aa46f4d0f131051adb88af735b980c59c05987a2acfebf2c8c3</originalsourceid><addsrcrecordid>eNp9kVtv1DAQhS0Eohd44QegPCFUKa0ntpP4EZVeQG2R0CIQL9bEcVgvznprJy3593XY5fLUpxnNfHOkM4eQV0CPgdLiZGX64bigpYQnZB-orPI0lU_nXshcAv22Rw5iXFEKIIA_J3sgC1ozSffJ6gbXPg5h1MMY0GW4RjdFG7NmynDwvdVZ54M2WeqCj9pvpjRwzt-bdmac_bEc_l_6dTYsTRaxNxkGvbR3STU625oX5FmHLpqXu3pIvpyfLU4v86tPFx9O313lmokK8hYbxrVApqEpOSIvO97SDlhyA9g2dY1dxUQja6qF1MliXWGBujNNV-has0PyZqu7Cf52NHFQvY3aOIdr48eoykoUnFcigW8fBaGsgEkOwBN6tEVnnzGYTm2C7TFMCqiaQ1BzCOp3CAl-vdMdm960_9Dd1xMAW-DeOjM9IqU-nl0v_ojm2xsbB_Pr7w2Gn8kQq4T6enOh3sN3uPx8zdSCPQB1M6Nf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671394114</pqid></control><display><type>article</type><title>Nanostructural analysis by atomic force microscopy followed by light microscopy on the same archival slide</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Wagner, Mathias ; Kaehler, Dirk ; Anhenn, Olaf ; Betz, Thomas ; Awad, Sally ; Shamaa, Ali ; Theegarten, Dirk ; Linder, Roland</creator><creatorcontrib>Wagner, Mathias ; Kaehler, Dirk ; Anhenn, Olaf ; Betz, Thomas ; Awad, Sally ; Shamaa, Ali ; Theegarten, Dirk ; Linder, Roland</creatorcontrib><description>Integrated information on ultrastructural surface texture and chemistry increasingly plays a role in the biomedical sciences. Light microscopy provides access to biochemical data by the application of dyes. Ultrastructural representation of the surface structure of tissues, cells, or macromolecules can be obtained by scanning electron microscopy (SEM). However, SEM often requires gold or coal coating of biological samples, which makes a combined examination by light microscopy and SEM difficult. Conventional histochemical staining methods are not easily applicable to biological material subsequent to such treatment. Atomic force microscopy (AFM) gives access to surface textures down to ultrastructural dimensions without previous coating of the sample. A combination of AFM with conventional histochemical staining protocols for light microscopy on a single slide is therefore presented. Unstained cores were examined using AFM (tapping mode) and subsequently stained histochemically. The images obtained by AFM were compared with the results of histochemistry. AFM technology did not interfere with any of the histochemical staining protocols. Ultrastructurally analyzed regions could be identified in light microscopy and histochemical properties of ultrastructurally determined regions could be seen. AFM‐generated ultrastructural information with subsequent staining gives way to novel findings in the biomedical sciences. Microsc. Res. Tech., 2009. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.20691</identifier><identifier>PMID: 19208390</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Atomic force microscopy ; Biological materials ; Brain - pathology ; Brain - ultrastructure ; histochemistry ; light microscopy ; Lung - pathology ; Lung - ultrastructure ; Microscopy ; Microscopy - methods ; Microscopy, Atomic Force - methods ; Nanostructure ; Pathology - methods ; pneumonia ; Pneumonia - pathology ; Scanning electron microscopy ; Staining ; Surface layer ; Texture ; Tuberculosis - pathology</subject><ispartof>Microscopy research and technique, 2009-07, Vol.72 (7), p.471-481</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><rights>(c) 2009 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3571-dab34c5a3c1b64aa46f4d0f131051adb88af735b980c59c05987a2acfebf2c8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjemt.20691$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjemt.20691$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19208390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagner, Mathias</creatorcontrib><creatorcontrib>Kaehler, Dirk</creatorcontrib><creatorcontrib>Anhenn, Olaf</creatorcontrib><creatorcontrib>Betz, Thomas</creatorcontrib><creatorcontrib>Awad, Sally</creatorcontrib><creatorcontrib>Shamaa, Ali</creatorcontrib><creatorcontrib>Theegarten, Dirk</creatorcontrib><creatorcontrib>Linder, Roland</creatorcontrib><title>Nanostructural analysis by atomic force microscopy followed by light microscopy on the same archival slide</title><title>Microscopy research and technique</title><addtitle>Microsc. Res. Tech</addtitle><description>Integrated information on ultrastructural surface texture and chemistry increasingly plays a role in the biomedical sciences. Light microscopy provides access to biochemical data by the application of dyes. Ultrastructural representation of the surface structure of tissues, cells, or macromolecules can be obtained by scanning electron microscopy (SEM). However, SEM often requires gold or coal coating of biological samples, which makes a combined examination by light microscopy and SEM difficult. Conventional histochemical staining methods are not easily applicable to biological material subsequent to such treatment. Atomic force microscopy (AFM) gives access to surface textures down to ultrastructural dimensions without previous coating of the sample. A combination of AFM with conventional histochemical staining protocols for light microscopy on a single slide is therefore presented. Unstained cores were examined using AFM (tapping mode) and subsequently stained histochemically. The images obtained by AFM were compared with the results of histochemistry. AFM technology did not interfere with any of the histochemical staining protocols. Ultrastructurally analyzed regions could be identified in light microscopy and histochemical properties of ultrastructurally determined regions could be seen. AFM‐generated ultrastructural information with subsequent staining gives way to novel findings in the biomedical sciences. Microsc. Res. Tech., 2009. © 2009 Wiley‐Liss, Inc.</description><subject>Atomic force microscopy</subject><subject>Biological materials</subject><subject>Brain - pathology</subject><subject>Brain - ultrastructure</subject><subject>histochemistry</subject><subject>light microscopy</subject><subject>Lung - pathology</subject><subject>Lung - ultrastructure</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Nanostructure</subject><subject>Pathology - methods</subject><subject>pneumonia</subject><subject>Pneumonia - pathology</subject><subject>Scanning electron microscopy</subject><subject>Staining</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Tuberculosis - pathology</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kVtv1DAQhS0Eohd44QegPCFUKa0ntpP4EZVeQG2R0CIQL9bEcVgvznprJy3593XY5fLUpxnNfHOkM4eQV0CPgdLiZGX64bigpYQnZB-orPI0lU_nXshcAv22Rw5iXFEKIIA_J3sgC1ozSffJ6gbXPg5h1MMY0GW4RjdFG7NmynDwvdVZ54M2WeqCj9pvpjRwzt-bdmac_bEc_l_6dTYsTRaxNxkGvbR3STU625oX5FmHLpqXu3pIvpyfLU4v86tPFx9O313lmokK8hYbxrVApqEpOSIvO97SDlhyA9g2dY1dxUQja6qF1MliXWGBujNNV-has0PyZqu7Cf52NHFQvY3aOIdr48eoykoUnFcigW8fBaGsgEkOwBN6tEVnnzGYTm2C7TFMCqiaQ1BzCOp3CAl-vdMdm960_9Dd1xMAW-DeOjM9IqU-nl0v_ojm2xsbB_Pr7w2Gn8kQq4T6enOh3sN3uPx8zdSCPQB1M6Nf</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Wagner, Mathias</creator><creator>Kaehler, Dirk</creator><creator>Anhenn, Olaf</creator><creator>Betz, Thomas</creator><creator>Awad, Sally</creator><creator>Shamaa, Ali</creator><creator>Theegarten, Dirk</creator><creator>Linder, Roland</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>200907</creationdate><title>Nanostructural analysis by atomic force microscopy followed by light microscopy on the same archival slide</title><author>Wagner, Mathias ; Kaehler, Dirk ; Anhenn, Olaf ; Betz, Thomas ; Awad, Sally ; Shamaa, Ali ; Theegarten, Dirk ; Linder, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-dab34c5a3c1b64aa46f4d0f131051adb88af735b980c59c05987a2acfebf2c8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atomic force microscopy</topic><topic>Biological materials</topic><topic>Brain - pathology</topic><topic>Brain - ultrastructure</topic><topic>histochemistry</topic><topic>light microscopy</topic><topic>Lung - pathology</topic><topic>Lung - ultrastructure</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Nanostructure</topic><topic>Pathology - methods</topic><topic>pneumonia</topic><topic>Pneumonia - pathology</topic><topic>Scanning electron microscopy</topic><topic>Staining</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Tuberculosis - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Mathias</creatorcontrib><creatorcontrib>Kaehler, Dirk</creatorcontrib><creatorcontrib>Anhenn, Olaf</creatorcontrib><creatorcontrib>Betz, Thomas</creatorcontrib><creatorcontrib>Awad, Sally</creatorcontrib><creatorcontrib>Shamaa, Ali</creatorcontrib><creatorcontrib>Theegarten, Dirk</creatorcontrib><creatorcontrib>Linder, Roland</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Mathias</au><au>Kaehler, Dirk</au><au>Anhenn, Olaf</au><au>Betz, Thomas</au><au>Awad, Sally</au><au>Shamaa, Ali</au><au>Theegarten, Dirk</au><au>Linder, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructural analysis by atomic force microscopy followed by light microscopy on the same archival slide</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc. Res. Tech</addtitle><date>2009-07</date><risdate>2009</risdate><volume>72</volume><issue>7</issue><spage>471</spage><epage>481</epage><pages>471-481</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>Integrated information on ultrastructural surface texture and chemistry increasingly plays a role in the biomedical sciences. Light microscopy provides access to biochemical data by the application of dyes. Ultrastructural representation of the surface structure of tissues, cells, or macromolecules can be obtained by scanning electron microscopy (SEM). However, SEM often requires gold or coal coating of biological samples, which makes a combined examination by light microscopy and SEM difficult. Conventional histochemical staining methods are not easily applicable to biological material subsequent to such treatment. Atomic force microscopy (AFM) gives access to surface textures down to ultrastructural dimensions without previous coating of the sample. A combination of AFM with conventional histochemical staining protocols for light microscopy on a single slide is therefore presented. Unstained cores were examined using AFM (tapping mode) and subsequently stained histochemically. The images obtained by AFM were compared with the results of histochemistry. AFM technology did not interfere with any of the histochemical staining protocols. Ultrastructurally analyzed regions could be identified in light microscopy and histochemical properties of ultrastructurally determined regions could be seen. AFM‐generated ultrastructural information with subsequent staining gives way to novel findings in the biomedical sciences. Microsc. Res. Tech., 2009. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19208390</pmid><doi>10.1002/jemt.20691</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1059-910X
ispartof Microscopy research and technique, 2009-07, Vol.72 (7), p.471-481
issn 1059-910X
1097-0029
language eng
recordid cdi_proquest_miscellaneous_67524475
source MEDLINE; Wiley Online Library All Journals
subjects Atomic force microscopy
Biological materials
Brain - pathology
Brain - ultrastructure
histochemistry
light microscopy
Lung - pathology
Lung - ultrastructure
Microscopy
Microscopy - methods
Microscopy, Atomic Force - methods
Nanostructure
Pathology - methods
pneumonia
Pneumonia - pathology
Scanning electron microscopy
Staining
Surface layer
Texture
Tuberculosis - pathology
title Nanostructural analysis by atomic force microscopy followed by light microscopy on the same archival slide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructural%20analysis%20by%20atomic%20force%20microscopy%20followed%20by%20light%20microscopy%20on%20the%20same%20archival%20slide&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Wagner,%20Mathias&rft.date=2009-07&rft.volume=72&rft.issue=7&rft.spage=471&rft.epage=481&rft.pages=471-481&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.20691&rft_dat=%3Cproquest_cross%3E67524475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671394114&rft_id=info:pmid/19208390&rfr_iscdi=true