Development of a novel computer-aided diagnosis system for automatic discrimination of malignant from benign solitary pulmonary nodules on thin-section dynamic computed tomography

As an application of the computer-aided diagnosis of solitary pulmonary nodules (SPNs), 3-dimensional contrast-enhanced (CE) dynamic helical computed tomography (HCT) was performed to evaluate temporal changes in the internal structure of nodules to differentiate between benign nodules (BNs) and mal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer assisted tomography 2005-03, Vol.29 (2), p.215-222
Hauptverfasser: Mori, Kiyoshi, Niki, Noboru, Kondo, Teturo, Kamiyama, Yukari, Kodama, Teturo, Kawada, Yoshiki, Moriyama, Noriyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue 2
container_start_page 215
container_title Journal of computer assisted tomography
container_volume 29
creator Mori, Kiyoshi
Niki, Noboru
Kondo, Teturo
Kamiyama, Yukari
Kodama, Teturo
Kawada, Yoshiki
Moriyama, Noriyuki
description As an application of the computer-aided diagnosis of solitary pulmonary nodules (SPNs), 3-dimensional contrast-enhanced (CE) dynamic helical computed tomography (HCT) was performed to evaluate temporal changes in the internal structure of nodules to differentiate between benign nodules (BNs) and malignant nodules (MNs). There were 62 SPNs (35 MNs and 27 BNs) included in this study. Scanning (2-mm collimation) was performed before and 2 and 4 minutes after CE dynamic HCT. The CT data were sent to a computer, and the pixels inside the nodule were characterized in terms of 3 parameters (attenuation, shape index, and curvedness value). Based on the CT data at 4 (MN: 1.81-27.1, BN: -42.8 to -3.29) minutes after CE-dynamic HCT, a score of 0 or higher can be assumed to indicate an MN. Three-dimensional computer-aided diagnosis of the internal structure of SPNs using CE dynamic HCT was found to be effective for differentiating between BNs and MNs.
doi_str_mv 10.1097/01.rct.0000155668.28514.01
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67523736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67523736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-257fc2b6d752e743f2850c0b197d9ea6937d97710d6e430b248ceeefd83ab71b3</originalsourceid><addsrcrecordid>eNqFUcFu3CAQ9aFVkib9hQr10JtdMGC8vVVp2kaK1Et7RhjGGyoDLuBK-135wcwmK-UYLsMMb94M7zXNR0Y7RnfqM2VdtrWjeJiUwzB2_SiZ6Ch701xQPvB2VEyeN-9K-YsQxbk4a86ZVKqXgl40D9_gPyxpDRArSTMxJCYsEJvCulXIrfEOHHHe7GMqvpByKBUCmVMmZqspmOotPhebffARsxSPPMEsfh8Nks45BTJBxJSUtPhq8oGs2xJSPN5ictsChWBbvfexLWCfONwhmoDUp0UcwVlpn816f7hq3s5mKfD-FC-bP99vfl__bO9-_bi9_nrXWsFEbXupZttPg1OyByX4jMpQSye2U24HZthxjEox6gYQnE69GC0AzG7kZlJs4pfNp2feNad_G5SqA_4TlsVESFvRAxJzhRq_BuypVIMUPQK_PANtTqVkmPWKsqEMmlF99FNTptFP_eKnfvIT69j84TRlmwK4l9aTmfwRLv6lFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20576542</pqid></control><display><type>article</type><title>Development of a novel computer-aided diagnosis system for automatic discrimination of malignant from benign solitary pulmonary nodules on thin-section dynamic computed tomography</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>Mori, Kiyoshi ; Niki, Noboru ; Kondo, Teturo ; Kamiyama, Yukari ; Kodama, Teturo ; Kawada, Yoshiki ; Moriyama, Noriyuki</creator><creatorcontrib>Mori, Kiyoshi ; Niki, Noboru ; Kondo, Teturo ; Kamiyama, Yukari ; Kodama, Teturo ; Kawada, Yoshiki ; Moriyama, Noriyuki</creatorcontrib><description>As an application of the computer-aided diagnosis of solitary pulmonary nodules (SPNs), 3-dimensional contrast-enhanced (CE) dynamic helical computed tomography (HCT) was performed to evaluate temporal changes in the internal structure of nodules to differentiate between benign nodules (BNs) and malignant nodules (MNs). There were 62 SPNs (35 MNs and 27 BNs) included in this study. Scanning (2-mm collimation) was performed before and 2 and 4 minutes after CE dynamic HCT. The CT data were sent to a computer, and the pixels inside the nodule were characterized in terms of 3 parameters (attenuation, shape index, and curvedness value). Based on the CT data at 4 (MN: 1.81-27.1, BN: -42.8 to -3.29) minutes after CE-dynamic HCT, a score of 0 or higher can be assumed to indicate an MN. Three-dimensional computer-aided diagnosis of the internal structure of SPNs using CE dynamic HCT was found to be effective for differentiating between BNs and MNs.</description><identifier>ISSN: 0363-8715</identifier><identifier>DOI: 10.1097/01.rct.0000155668.28514.01</identifier><identifier>PMID: 15772540</identifier><language>eng</language><publisher>United States</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Child, Preschool ; Computer Graphics ; Contrast Media - administration &amp; dosage ; Diagnosis, Computer-Assisted - methods ; Diagnosis, Differential ; Female ; Fourier Analysis ; Humans ; Image Enhancement - methods ; Image Processing, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Injections, Intravenous ; Iopamidol ; Linear Models ; Lung - diagnostic imaging ; Lung Diseases - diagnostic imaging ; Lung Neoplasms - diagnostic imaging ; Male ; Mathematical Computing ; Middle Aged ; ROC Curve ; Software ; Solitary Pulmonary Nodule - diagnostic imaging ; Solitary Pulmonary Nodule - etiology ; Tomography, Spiral Computed - methods</subject><ispartof>Journal of computer assisted tomography, 2005-03, Vol.29 (2), p.215-222</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-257fc2b6d752e743f2850c0b197d9ea6937d97710d6e430b248ceeefd83ab71b3</citedby><cites>FETCH-LOGICAL-c414t-257fc2b6d752e743f2850c0b197d9ea6937d97710d6e430b248ceeefd83ab71b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15772540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mori, Kiyoshi</creatorcontrib><creatorcontrib>Niki, Noboru</creatorcontrib><creatorcontrib>Kondo, Teturo</creatorcontrib><creatorcontrib>Kamiyama, Yukari</creatorcontrib><creatorcontrib>Kodama, Teturo</creatorcontrib><creatorcontrib>Kawada, Yoshiki</creatorcontrib><creatorcontrib>Moriyama, Noriyuki</creatorcontrib><title>Development of a novel computer-aided diagnosis system for automatic discrimination of malignant from benign solitary pulmonary nodules on thin-section dynamic computed tomography</title><title>Journal of computer assisted tomography</title><addtitle>J Comput Assist Tomogr</addtitle><description>As an application of the computer-aided diagnosis of solitary pulmonary nodules (SPNs), 3-dimensional contrast-enhanced (CE) dynamic helical computed tomography (HCT) was performed to evaluate temporal changes in the internal structure of nodules to differentiate between benign nodules (BNs) and malignant nodules (MNs). There were 62 SPNs (35 MNs and 27 BNs) included in this study. Scanning (2-mm collimation) was performed before and 2 and 4 minutes after CE dynamic HCT. The CT data were sent to a computer, and the pixels inside the nodule were characterized in terms of 3 parameters (attenuation, shape index, and curvedness value). Based on the CT data at 4 (MN: 1.81-27.1, BN: -42.8 to -3.29) minutes after CE-dynamic HCT, a score of 0 or higher can be assumed to indicate an MN. Three-dimensional computer-aided diagnosis of the internal structure of SPNs using CE dynamic HCT was found to be effective for differentiating between BNs and MNs.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Child, Preschool</subject><subject>Computer Graphics</subject><subject>Contrast Media - administration &amp; dosage</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diagnosis, Differential</subject><subject>Female</subject><subject>Fourier Analysis</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Injections, Intravenous</subject><subject>Iopamidol</subject><subject>Linear Models</subject><subject>Lung - diagnostic imaging</subject><subject>Lung Diseases - diagnostic imaging</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Male</subject><subject>Mathematical Computing</subject><subject>Middle Aged</subject><subject>ROC Curve</subject><subject>Software</subject><subject>Solitary Pulmonary Nodule - diagnostic imaging</subject><subject>Solitary Pulmonary Nodule - etiology</subject><subject>Tomography, Spiral Computed - methods</subject><issn>0363-8715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcFu3CAQ9aFVkib9hQr10JtdMGC8vVVp2kaK1Et7RhjGGyoDLuBK-135wcwmK-UYLsMMb94M7zXNR0Y7RnfqM2VdtrWjeJiUwzB2_SiZ6Ch701xQPvB2VEyeN-9K-YsQxbk4a86ZVKqXgl40D9_gPyxpDRArSTMxJCYsEJvCulXIrfEOHHHe7GMqvpByKBUCmVMmZqspmOotPhebffARsxSPPMEsfh8Nks45BTJBxJSUtPhq8oGs2xJSPN5ictsChWBbvfexLWCfONwhmoDUp0UcwVlpn816f7hq3s5mKfD-FC-bP99vfl__bO9-_bi9_nrXWsFEbXupZttPg1OyByX4jMpQSye2U24HZthxjEox6gYQnE69GC0AzG7kZlJs4pfNp2feNad_G5SqA_4TlsVESFvRAxJzhRq_BuypVIMUPQK_PANtTqVkmPWKsqEMmlF99FNTptFP_eKnfvIT69j84TRlmwK4l9aTmfwRLv6lFw</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Mori, Kiyoshi</creator><creator>Niki, Noboru</creator><creator>Kondo, Teturo</creator><creator>Kamiyama, Yukari</creator><creator>Kodama, Teturo</creator><creator>Kawada, Yoshiki</creator><creator>Moriyama, Noriyuki</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050301</creationdate><title>Development of a novel computer-aided diagnosis system for automatic discrimination of malignant from benign solitary pulmonary nodules on thin-section dynamic computed tomography</title><author>Mori, Kiyoshi ; Niki, Noboru ; Kondo, Teturo ; Kamiyama, Yukari ; Kodama, Teturo ; Kawada, Yoshiki ; Moriyama, Noriyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-257fc2b6d752e743f2850c0b197d9ea6937d97710d6e430b248ceeefd83ab71b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Child, Preschool</topic><topic>Computer Graphics</topic><topic>Contrast Media - administration &amp; dosage</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diagnosis, Differential</topic><topic>Female</topic><topic>Fourier Analysis</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Injections, Intravenous</topic><topic>Iopamidol</topic><topic>Linear Models</topic><topic>Lung - diagnostic imaging</topic><topic>Lung Diseases - diagnostic imaging</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Male</topic><topic>Mathematical Computing</topic><topic>Middle Aged</topic><topic>ROC Curve</topic><topic>Software</topic><topic>Solitary Pulmonary Nodule - diagnostic imaging</topic><topic>Solitary Pulmonary Nodule - etiology</topic><topic>Tomography, Spiral Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mori, Kiyoshi</creatorcontrib><creatorcontrib>Niki, Noboru</creatorcontrib><creatorcontrib>Kondo, Teturo</creatorcontrib><creatorcontrib>Kamiyama, Yukari</creatorcontrib><creatorcontrib>Kodama, Teturo</creatorcontrib><creatorcontrib>Kawada, Yoshiki</creatorcontrib><creatorcontrib>Moriyama, Noriyuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computer assisted tomography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mori, Kiyoshi</au><au>Niki, Noboru</au><au>Kondo, Teturo</au><au>Kamiyama, Yukari</au><au>Kodama, Teturo</au><au>Kawada, Yoshiki</au><au>Moriyama, Noriyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a novel computer-aided diagnosis system for automatic discrimination of malignant from benign solitary pulmonary nodules on thin-section dynamic computed tomography</atitle><jtitle>Journal of computer assisted tomography</jtitle><addtitle>J Comput Assist Tomogr</addtitle><date>2005-03-01</date><risdate>2005</risdate><volume>29</volume><issue>2</issue><spage>215</spage><epage>222</epage><pages>215-222</pages><issn>0363-8715</issn><abstract>As an application of the computer-aided diagnosis of solitary pulmonary nodules (SPNs), 3-dimensional contrast-enhanced (CE) dynamic helical computed tomography (HCT) was performed to evaluate temporal changes in the internal structure of nodules to differentiate between benign nodules (BNs) and malignant nodules (MNs). There were 62 SPNs (35 MNs and 27 BNs) included in this study. Scanning (2-mm collimation) was performed before and 2 and 4 minutes after CE dynamic HCT. The CT data were sent to a computer, and the pixels inside the nodule were characterized in terms of 3 parameters (attenuation, shape index, and curvedness value). Based on the CT data at 4 (MN: 1.81-27.1, BN: -42.8 to -3.29) minutes after CE-dynamic HCT, a score of 0 or higher can be assumed to indicate an MN. Three-dimensional computer-aided diagnosis of the internal structure of SPNs using CE dynamic HCT was found to be effective for differentiating between BNs and MNs.</abstract><cop>United States</cop><pmid>15772540</pmid><doi>10.1097/01.rct.0000155668.28514.01</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-8715
ispartof Journal of computer assisted tomography, 2005-03, Vol.29 (2), p.215-222
issn 0363-8715
language eng
recordid cdi_proquest_miscellaneous_67523736
source MEDLINE; Journals@Ovid Complete
subjects Adult
Aged
Aged, 80 and over
Child, Preschool
Computer Graphics
Contrast Media - administration & dosage
Diagnosis, Computer-Assisted - methods
Diagnosis, Differential
Female
Fourier Analysis
Humans
Image Enhancement - methods
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Injections, Intravenous
Iopamidol
Linear Models
Lung - diagnostic imaging
Lung Diseases - diagnostic imaging
Lung Neoplasms - diagnostic imaging
Male
Mathematical Computing
Middle Aged
ROC Curve
Software
Solitary Pulmonary Nodule - diagnostic imaging
Solitary Pulmonary Nodule - etiology
Tomography, Spiral Computed - methods
title Development of a novel computer-aided diagnosis system for automatic discrimination of malignant from benign solitary pulmonary nodules on thin-section dynamic computed tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A10%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20novel%20computer-aided%20diagnosis%20system%20for%20automatic%20discrimination%20of%20malignant%20from%20benign%20solitary%20pulmonary%20nodules%20on%20thin-section%20dynamic%20computed%20tomography&rft.jtitle=Journal%20of%20computer%20assisted%20tomography&rft.au=Mori,%20Kiyoshi&rft.date=2005-03-01&rft.volume=29&rft.issue=2&rft.spage=215&rft.epage=222&rft.pages=215-222&rft.issn=0363-8715&rft_id=info:doi/10.1097/01.rct.0000155668.28514.01&rft_dat=%3Cproquest_cross%3E67523736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20576542&rft_id=info:pmid/15772540&rfr_iscdi=true