alpha1-Adrenergic receptors regulate neurogenesis and gliogenesis
The understanding of the function of alpha(1)-adrenergic receptors in the brain has been limited due to a lack of specific ligands and antibodies. We circumvented this problem by using transgenic mice engineered to overexpress either wild-type receptor tagged with enhanced green fluorescent protein...
Gespeichert in:
Veröffentlicht in: | Molecular pharmacology 2009-08, Vol.76 (2), p.314-326 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 326 |
---|---|
container_issue | 2 |
container_start_page | 314 |
container_title | Molecular pharmacology |
container_volume | 76 |
creator | Gupta, Manveen K Papay, Robert S Jurgens, Chris W D Gaivin, Robert J Shi, Ting Doze, Van A Perez, Dianne M |
description | The understanding of the function of alpha(1)-adrenergic receptors in the brain has been limited due to a lack of specific ligands and antibodies. We circumvented this problem by using transgenic mice engineered to overexpress either wild-type receptor tagged with enhanced green fluorescent protein or constitutively active mutant alpha(1)-adrenergic receptor subtypes in tissues in which they are normally expressed. We identified intriguing alpha(1A)-adrenergic receptor subtype-expressing cells with a migratory morphology in the adult subventricular zone that coexpressed markers of neural stem cell and/or progenitors. Incorporation of 5-bromo-2-deoxyuridine in vivo increased in neurogenic areas in adult alpha(1A)-adrenergic receptor transgenic mice or normal mice given the alpha(1A)-adrenergic receptor-selective agonist, cirazoline. Neonatal neurospheres isolated from normal mice expressed a mixture of alpha(1)-adrenergic receptor subtypes, and stimulation of these receptors resulted in increased expression of the alpha(1B)-adrenergic receptor subtype, proneural basic helix-loop-helix transcription factors, and the differentiation and migration of neuronal progenitors for catecholaminergic neurons and interneurons. alpha(1)-Adrenergic receptor stimulation increased the apoptosis of astrocytes and regulated survival of neonatal neurons through phosphatidylinositol 3-kinase signaling. However, in adult normal neurospheres, alpha(1)-adrenergic receptor stimulation increased the expression of glial markers at the expense of neuronal differentiation. In vivo, S100-positive glial and betaIII tubulin neuronal progenitors colocalized with either alpha(1)-adrenergic receptor subtype in the olfactory bulb. Our results indicate that alpha(1)-adrenergic receptors can regulate both neurogenesis and gliogenesis that may be developmentally dependent. Our findings may lead to new therapies to treat neurodegenerative diseases. |
doi_str_mv | 10.1124/mol.109.057307 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67510598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67510598</sourcerecordid><originalsourceid>FETCH-LOGICAL-p544-3e64b0f6993e0cedfe55ad1144b48f93d09a106a7d28383ebe53f762a64688003</originalsourceid><addsrcrecordid>eNo1jztrwzAUhUWhNGnatWPx1M3uvdbD0hhCXxDokt3I1rXrIj8q2UP_fQ1NpvMd-DhwGHtAyBBz8dyPPkMwGciCQ3HFtihzTAERN-w2xm8AFFLDDdugEbrIhdiyvfXTl8V07wINFNquTgLVNM1jiCu1i7czJQMtYWxXIXYxsYNLWt9d-h27bqyPdH_OHTu9vpwO7-nx8-3jsD-mkxQi5aREBY0yhhPU5BqS0jpEISqhG8MdGIugbOFyzTWniiRvCpVbJZTWAHzHnv5npzD-LBTnsu9iTd7bgcYllqqQCNLoVXw8i0vVkyun0PU2_JaXz_wPrAdWxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67510598</pqid></control><display><type>article</type><title>alpha1-Adrenergic receptors regulate neurogenesis and gliogenesis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gupta, Manveen K ; Papay, Robert S ; Jurgens, Chris W D ; Gaivin, Robert J ; Shi, Ting ; Doze, Van A ; Perez, Dianne M</creator><creatorcontrib>Gupta, Manveen K ; Papay, Robert S ; Jurgens, Chris W D ; Gaivin, Robert J ; Shi, Ting ; Doze, Van A ; Perez, Dianne M</creatorcontrib><description>The understanding of the function of alpha(1)-adrenergic receptors in the brain has been limited due to a lack of specific ligands and antibodies. We circumvented this problem by using transgenic mice engineered to overexpress either wild-type receptor tagged with enhanced green fluorescent protein or constitutively active mutant alpha(1)-adrenergic receptor subtypes in tissues in which they are normally expressed. We identified intriguing alpha(1A)-adrenergic receptor subtype-expressing cells with a migratory morphology in the adult subventricular zone that coexpressed markers of neural stem cell and/or progenitors. Incorporation of 5-bromo-2-deoxyuridine in vivo increased in neurogenic areas in adult alpha(1A)-adrenergic receptor transgenic mice or normal mice given the alpha(1A)-adrenergic receptor-selective agonist, cirazoline. Neonatal neurospheres isolated from normal mice expressed a mixture of alpha(1)-adrenergic receptor subtypes, and stimulation of these receptors resulted in increased expression of the alpha(1B)-adrenergic receptor subtype, proneural basic helix-loop-helix transcription factors, and the differentiation and migration of neuronal progenitors for catecholaminergic neurons and interneurons. alpha(1)-Adrenergic receptor stimulation increased the apoptosis of astrocytes and regulated survival of neonatal neurons through phosphatidylinositol 3-kinase signaling. However, in adult normal neurospheres, alpha(1)-adrenergic receptor stimulation increased the expression of glial markers at the expense of neuronal differentiation. In vivo, S100-positive glial and betaIII tubulin neuronal progenitors colocalized with either alpha(1)-adrenergic receptor subtype in the olfactory bulb. Our results indicate that alpha(1)-adrenergic receptors can regulate both neurogenesis and gliogenesis that may be developmentally dependent. Our findings may lead to new therapies to treat neurodegenerative diseases.</description><identifier>EISSN: 1521-0111</identifier><identifier>DOI: 10.1124/mol.109.057307</identifier><identifier>PMID: 19487244</identifier><language>eng</language><publisher>United States</publisher><subject>Adrenergic alpha-1 Receptor Agonists ; Animals ; Animals, Newborn ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Biomarkers - metabolism ; Cell Differentiation - genetics ; Cell Differentiation - physiology ; Cell Movement - genetics ; Cell Movement - physiology ; Green Fluorescent Proteins - metabolism ; Imidazoles - pharmacology ; Immunohistochemistry ; Interneurons - cytology ; Interneurons - metabolism ; Mice ; Mice, Transgenic ; Neurogenesis ; Neuroglia - metabolism ; Neurons - cytology ; Neurons - drug effects ; Neurons - metabolism ; Phosphatidylinositol 3-Kinases - metabolism ; Receptors, Adrenergic, alpha-1 - genetics ; Receptors, Adrenergic, alpha-1 - metabolism ; Spheroids, Cellular - metabolism</subject><ispartof>Molecular pharmacology, 2009-08, Vol.76 (2), p.314-326</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19487244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Manveen K</creatorcontrib><creatorcontrib>Papay, Robert S</creatorcontrib><creatorcontrib>Jurgens, Chris W D</creatorcontrib><creatorcontrib>Gaivin, Robert J</creatorcontrib><creatorcontrib>Shi, Ting</creatorcontrib><creatorcontrib>Doze, Van A</creatorcontrib><creatorcontrib>Perez, Dianne M</creatorcontrib><title>alpha1-Adrenergic receptors regulate neurogenesis and gliogenesis</title><title>Molecular pharmacology</title><addtitle>Mol Pharmacol</addtitle><description>The understanding of the function of alpha(1)-adrenergic receptors in the brain has been limited due to a lack of specific ligands and antibodies. We circumvented this problem by using transgenic mice engineered to overexpress either wild-type receptor tagged with enhanced green fluorescent protein or constitutively active mutant alpha(1)-adrenergic receptor subtypes in tissues in which they are normally expressed. We identified intriguing alpha(1A)-adrenergic receptor subtype-expressing cells with a migratory morphology in the adult subventricular zone that coexpressed markers of neural stem cell and/or progenitors. Incorporation of 5-bromo-2-deoxyuridine in vivo increased in neurogenic areas in adult alpha(1A)-adrenergic receptor transgenic mice or normal mice given the alpha(1A)-adrenergic receptor-selective agonist, cirazoline. Neonatal neurospheres isolated from normal mice expressed a mixture of alpha(1)-adrenergic receptor subtypes, and stimulation of these receptors resulted in increased expression of the alpha(1B)-adrenergic receptor subtype, proneural basic helix-loop-helix transcription factors, and the differentiation and migration of neuronal progenitors for catecholaminergic neurons and interneurons. alpha(1)-Adrenergic receptor stimulation increased the apoptosis of astrocytes and regulated survival of neonatal neurons through phosphatidylinositol 3-kinase signaling. However, in adult normal neurospheres, alpha(1)-adrenergic receptor stimulation increased the expression of glial markers at the expense of neuronal differentiation. In vivo, S100-positive glial and betaIII tubulin neuronal progenitors colocalized with either alpha(1)-adrenergic receptor subtype in the olfactory bulb. Our results indicate that alpha(1)-adrenergic receptors can regulate both neurogenesis and gliogenesis that may be developmentally dependent. Our findings may lead to new therapies to treat neurodegenerative diseases.</description><subject>Adrenergic alpha-1 Receptor Agonists</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Biomarkers - metabolism</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Movement - genetics</subject><subject>Cell Movement - physiology</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Imidazoles - pharmacology</subject><subject>Immunohistochemistry</subject><subject>Interneurons - cytology</subject><subject>Interneurons - metabolism</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neurogenesis</subject><subject>Neuroglia - metabolism</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Receptors, Adrenergic, alpha-1 - genetics</subject><subject>Receptors, Adrenergic, alpha-1 - metabolism</subject><subject>Spheroids, Cellular - metabolism</subject><issn>1521-0111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1jztrwzAUhUWhNGnatWPx1M3uvdbD0hhCXxDokt3I1rXrIj8q2UP_fQ1NpvMd-DhwGHtAyBBz8dyPPkMwGciCQ3HFtihzTAERN-w2xm8AFFLDDdugEbrIhdiyvfXTl8V07wINFNquTgLVNM1jiCu1i7czJQMtYWxXIXYxsYNLWt9d-h27bqyPdH_OHTu9vpwO7-nx8-3jsD-mkxQi5aREBY0yhhPU5BqS0jpEISqhG8MdGIugbOFyzTWniiRvCpVbJZTWAHzHnv5npzD-LBTnsu9iTd7bgcYllqqQCNLoVXw8i0vVkyun0PU2_JaXz_wPrAdWxw</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Gupta, Manveen K</creator><creator>Papay, Robert S</creator><creator>Jurgens, Chris W D</creator><creator>Gaivin, Robert J</creator><creator>Shi, Ting</creator><creator>Doze, Van A</creator><creator>Perez, Dianne M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200908</creationdate><title>alpha1-Adrenergic receptors regulate neurogenesis and gliogenesis</title><author>Gupta, Manveen K ; Papay, Robert S ; Jurgens, Chris W D ; Gaivin, Robert J ; Shi, Ting ; Doze, Van A ; Perez, Dianne M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p544-3e64b0f6993e0cedfe55ad1144b48f93d09a106a7d28383ebe53f762a64688003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adrenergic alpha-1 Receptor Agonists</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Biomarkers - metabolism</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Movement - genetics</topic><topic>Cell Movement - physiology</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Imidazoles - pharmacology</topic><topic>Immunohistochemistry</topic><topic>Interneurons - cytology</topic><topic>Interneurons - metabolism</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neurogenesis</topic><topic>Neuroglia - metabolism</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Receptors, Adrenergic, alpha-1 - genetics</topic><topic>Receptors, Adrenergic, alpha-1 - metabolism</topic><topic>Spheroids, Cellular - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Manveen K</creatorcontrib><creatorcontrib>Papay, Robert S</creatorcontrib><creatorcontrib>Jurgens, Chris W D</creatorcontrib><creatorcontrib>Gaivin, Robert J</creatorcontrib><creatorcontrib>Shi, Ting</creatorcontrib><creatorcontrib>Doze, Van A</creatorcontrib><creatorcontrib>Perez, Dianne M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Manveen K</au><au>Papay, Robert S</au><au>Jurgens, Chris W D</au><au>Gaivin, Robert J</au><au>Shi, Ting</au><au>Doze, Van A</au><au>Perez, Dianne M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>alpha1-Adrenergic receptors regulate neurogenesis and gliogenesis</atitle><jtitle>Molecular pharmacology</jtitle><addtitle>Mol Pharmacol</addtitle><date>2009-08</date><risdate>2009</risdate><volume>76</volume><issue>2</issue><spage>314</spage><epage>326</epage><pages>314-326</pages><eissn>1521-0111</eissn><abstract>The understanding of the function of alpha(1)-adrenergic receptors in the brain has been limited due to a lack of specific ligands and antibodies. We circumvented this problem by using transgenic mice engineered to overexpress either wild-type receptor tagged with enhanced green fluorescent protein or constitutively active mutant alpha(1)-adrenergic receptor subtypes in tissues in which they are normally expressed. We identified intriguing alpha(1A)-adrenergic receptor subtype-expressing cells with a migratory morphology in the adult subventricular zone that coexpressed markers of neural stem cell and/or progenitors. Incorporation of 5-bromo-2-deoxyuridine in vivo increased in neurogenic areas in adult alpha(1A)-adrenergic receptor transgenic mice or normal mice given the alpha(1A)-adrenergic receptor-selective agonist, cirazoline. Neonatal neurospheres isolated from normal mice expressed a mixture of alpha(1)-adrenergic receptor subtypes, and stimulation of these receptors resulted in increased expression of the alpha(1B)-adrenergic receptor subtype, proneural basic helix-loop-helix transcription factors, and the differentiation and migration of neuronal progenitors for catecholaminergic neurons and interneurons. alpha(1)-Adrenergic receptor stimulation increased the apoptosis of astrocytes and regulated survival of neonatal neurons through phosphatidylinositol 3-kinase signaling. However, in adult normal neurospheres, alpha(1)-adrenergic receptor stimulation increased the expression of glial markers at the expense of neuronal differentiation. In vivo, S100-positive glial and betaIII tubulin neuronal progenitors colocalized with either alpha(1)-adrenergic receptor subtype in the olfactory bulb. Our results indicate that alpha(1)-adrenergic receptors can regulate both neurogenesis and gliogenesis that may be developmentally dependent. Our findings may lead to new therapies to treat neurodegenerative diseases.</abstract><cop>United States</cop><pmid>19487244</pmid><doi>10.1124/mol.109.057307</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1521-0111 |
ispartof | Molecular pharmacology, 2009-08, Vol.76 (2), p.314-326 |
issn | 1521-0111 |
language | eng |
recordid | cdi_proquest_miscellaneous_67510598 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adrenergic alpha-1 Receptor Agonists Animals Animals, Newborn Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism Biomarkers - metabolism Cell Differentiation - genetics Cell Differentiation - physiology Cell Movement - genetics Cell Movement - physiology Green Fluorescent Proteins - metabolism Imidazoles - pharmacology Immunohistochemistry Interneurons - cytology Interneurons - metabolism Mice Mice, Transgenic Neurogenesis Neuroglia - metabolism Neurons - cytology Neurons - drug effects Neurons - metabolism Phosphatidylinositol 3-Kinases - metabolism Receptors, Adrenergic, alpha-1 - genetics Receptors, Adrenergic, alpha-1 - metabolism Spheroids, Cellular - metabolism |
title | alpha1-Adrenergic receptors regulate neurogenesis and gliogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=alpha1-Adrenergic%20receptors%20regulate%20neurogenesis%20and%20gliogenesis&rft.jtitle=Molecular%20pharmacology&rft.au=Gupta,%20Manveen%20K&rft.date=2009-08&rft.volume=76&rft.issue=2&rft.spage=314&rft.epage=326&rft.pages=314-326&rft.eissn=1521-0111&rft_id=info:doi/10.1124/mol.109.057307&rft_dat=%3Cproquest_pubme%3E67510598%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67510598&rft_id=info:pmid/19487244&rfr_iscdi=true |