tethering mechanism for length control in a processive carbohydrate polymerization

Carbohydrate polymers are the most abundant organic substances on earth. Their degrees of polymerization range from tens to thousands of units, yet polymerases generate the relevant lengths without the aid of a template. To gain insight into template-independent length control, we investigated how t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2009-07, Vol.106 (29), p.11851-11856
Hauptverfasser: May, John F, Splain, Rebecca A, Brotschi, Christine, Kiessling, Laura L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11856
container_issue 29
container_start_page 11851
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 106
creator May, John F
Splain, Rebecca A
Brotschi, Christine
Kiessling, Laura L
description Carbohydrate polymers are the most abundant organic substances on earth. Their degrees of polymerization range from tens to thousands of units, yet polymerases generate the relevant lengths without the aid of a template. To gain insight into template-independent length control, we investigated how the mycobacterial galactofuranosyltransferase GlfT2 mediates formation of the galactan, a polymer of galactofuranose residues that is an integral part of the cell wall. We show that isolated recombinant GlfT2 can catalyze the synthesis of polymers with degrees of polymerization that are commensurate with values observed in mycobacteria, indicating that length control by GlfT2 is intrinsic. Investigations using synthetic substrates reveal that GlfT2 is processive. The data indicate that GlfT2 controls length by using a substrate tether, which is distal from the site of elongation. The strength of interaction of that tether with the polymerase influences the length of the resultant polymer. Thus, our data identify a mechanism for length control by a template-independent polymerase.
doi_str_mv 10.1073/pnas.0901407106
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67507954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40484046</jstor_id><sourcerecordid>40484046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-d04fea7dba1eb0f99fabe695b4503e34b256533f656155f5fb9c323a7a34e75d3</originalsourceid><addsrcrecordid>eNqFkc-L1DAUx4so7rh69qQWD4KH7r40v5qLIIu_YEFQ9xzSNplmaJOapIvjX2_KDDvqZQ8hh_d5H95736J4juACAceXs1PxAgQgAhwBe1BsEAhUMSLgYbEBqHnVkJqcFU9i3AGAoA08Ls6QoBkHsSm-JZ0GHazblpPuBuVsnErjQzlqt01D2XmXgh9L60pVzsF3OkZ7q8tOhdYP-z6opMvZj_spS36rZL17Wjwyaoz62fE_L24-fvhx9bm6_vrpy9X766pjNaSqB2K04n2rkG7BCGFUq5mgLaGANSZtTRnF2DDKEKWGmlZ0uMaKK0w0pz0-L94dvPPSTrrvdJ5UjXIOdlJhL72y8t-Ks4Pc-ltZc0RJ02TBm6Mg-J-LjklONnZ6HJXTfomScQpcUHIvWEMDDNPV-Po_cOeX4PIVMoMIoozzDF0eoC74GIM2dyMjkGuqck1VnlLNHS__3vTEH2PMQHkE1s6TjslaSIQaijLy9h5EmmUck_6VMvviwO5i8uEOJkCa_NZ5Xh3qRnmptsFGefM9L4gBsXwFRvAfWEXLGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201415677</pqid></control><display><type>article</type><title>tethering mechanism for length control in a processive carbohydrate polymerization</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>May, John F ; Splain, Rebecca A ; Brotschi, Christine ; Kiessling, Laura L</creator><creatorcontrib>May, John F ; Splain, Rebecca A ; Brotschi, Christine ; Kiessling, Laura L</creatorcontrib><description>Carbohydrate polymers are the most abundant organic substances on earth. Their degrees of polymerization range from tens to thousands of units, yet polymerases generate the relevant lengths without the aid of a template. To gain insight into template-independent length control, we investigated how the mycobacterial galactofuranosyltransferase GlfT2 mediates formation of the galactan, a polymer of galactofuranose residues that is an integral part of the cell wall. We show that isolated recombinant GlfT2 can catalyze the synthesis of polymers with degrees of polymerization that are commensurate with values observed in mycobacteria, indicating that length control by GlfT2 is intrinsic. Investigations using synthetic substrates reveal that GlfT2 is processive. The data indicate that GlfT2 controls length by using a substrate tether, which is distal from the site of elongation. The strength of interaction of that tether with the polymerase influences the length of the resultant polymer. Thus, our data identify a mechanism for length control by a template-independent polymerase.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0901407106</identifier><identifier>PMID: 19571009</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteria ; Bacterial Proteins - metabolism ; Biological Sciences ; Biosynthesis ; Carbohydrates ; Carbohydrates - chemistry ; Catalysis ; Cell walls ; Chemical synthesis ; Data processing ; Elongation ; Enzymes ; Galactans ; Galactans - biosynthesis ; Galactans - chemistry ; Histidine - metabolism ; Lipids ; Models, Molecular ; Monomers ; Mycobacterium ; Mycobacterium tuberculosis - enzymology ; Oligopeptides - metabolism ; Physical Sciences ; Polymerization ; Polymers ; Polymers - chemistry ; Polysaccharides ; Recombinant Fusion Proteins - metabolism ; Substrate Specificity ; Uridine Diphosphate - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-07, Vol.106 (29), p.11851-11856</ispartof><rights>Copyright National Academy of Sciences Jul 21, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-d04fea7dba1eb0f99fabe695b4503e34b256533f656155f5fb9c323a7a34e75d3</citedby><cites>FETCH-LOGICAL-c620t-d04fea7dba1eb0f99fabe695b4503e34b256533f656155f5fb9c323a7a34e75d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/29.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40484046$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40484046$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19571009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>May, John F</creatorcontrib><creatorcontrib>Splain, Rebecca A</creatorcontrib><creatorcontrib>Brotschi, Christine</creatorcontrib><creatorcontrib>Kiessling, Laura L</creatorcontrib><title>tethering mechanism for length control in a processive carbohydrate polymerization</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Carbohydrate polymers are the most abundant organic substances on earth. Their degrees of polymerization range from tens to thousands of units, yet polymerases generate the relevant lengths without the aid of a template. To gain insight into template-independent length control, we investigated how the mycobacterial galactofuranosyltransferase GlfT2 mediates formation of the galactan, a polymer of galactofuranose residues that is an integral part of the cell wall. We show that isolated recombinant GlfT2 can catalyze the synthesis of polymers with degrees of polymerization that are commensurate with values observed in mycobacteria, indicating that length control by GlfT2 is intrinsic. Investigations using synthetic substrates reveal that GlfT2 is processive. The data indicate that GlfT2 controls length by using a substrate tether, which is distal from the site of elongation. The strength of interaction of that tether with the polymerase influences the length of the resultant polymer. Thus, our data identify a mechanism for length control by a template-independent polymerase.</description><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Carbohydrates</subject><subject>Carbohydrates - chemistry</subject><subject>Catalysis</subject><subject>Cell walls</subject><subject>Chemical synthesis</subject><subject>Data processing</subject><subject>Elongation</subject><subject>Enzymes</subject><subject>Galactans</subject><subject>Galactans - biosynthesis</subject><subject>Galactans - chemistry</subject><subject>Histidine - metabolism</subject><subject>Lipids</subject><subject>Models, Molecular</subject><subject>Monomers</subject><subject>Mycobacterium</subject><subject>Mycobacterium tuberculosis - enzymology</subject><subject>Oligopeptides - metabolism</subject><subject>Physical Sciences</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Polysaccharides</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Substrate Specificity</subject><subject>Uridine Diphosphate - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc-L1DAUx4so7rh69qQWD4KH7r40v5qLIIu_YEFQ9xzSNplmaJOapIvjX2_KDDvqZQ8hh_d5H95736J4juACAceXs1PxAgQgAhwBe1BsEAhUMSLgYbEBqHnVkJqcFU9i3AGAoA08Ls6QoBkHsSm-JZ0GHazblpPuBuVsnErjQzlqt01D2XmXgh9L60pVzsF3OkZ7q8tOhdYP-z6opMvZj_spS36rZL17Wjwyaoz62fE_L24-fvhx9bm6_vrpy9X766pjNaSqB2K04n2rkG7BCGFUq5mgLaGANSZtTRnF2DDKEKWGmlZ0uMaKK0w0pz0-L94dvPPSTrrvdJ5UjXIOdlJhL72y8t-Ks4Pc-ltZc0RJ02TBm6Mg-J-LjklONnZ6HJXTfomScQpcUHIvWEMDDNPV-Po_cOeX4PIVMoMIoozzDF0eoC74GIM2dyMjkGuqck1VnlLNHS__3vTEH2PMQHkE1s6TjslaSIQaijLy9h5EmmUck_6VMvviwO5i8uEOJkCa_NZ5Xh3qRnmptsFGefM9L4gBsXwFRvAfWEXLGA</recordid><startdate>20090721</startdate><enddate>20090721</enddate><creator>May, John F</creator><creator>Splain, Rebecca A</creator><creator>Brotschi, Christine</creator><creator>Kiessling, Laura L</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090721</creationdate><title>tethering mechanism for length control in a processive carbohydrate polymerization</title><author>May, John F ; Splain, Rebecca A ; Brotschi, Christine ; Kiessling, Laura L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-d04fea7dba1eb0f99fabe695b4503e34b256533f656155f5fb9c323a7a34e75d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Carbohydrates</topic><topic>Carbohydrates - chemistry</topic><topic>Catalysis</topic><topic>Cell walls</topic><topic>Chemical synthesis</topic><topic>Data processing</topic><topic>Elongation</topic><topic>Enzymes</topic><topic>Galactans</topic><topic>Galactans - biosynthesis</topic><topic>Galactans - chemistry</topic><topic>Histidine - metabolism</topic><topic>Lipids</topic><topic>Models, Molecular</topic><topic>Monomers</topic><topic>Mycobacterium</topic><topic>Mycobacterium tuberculosis - enzymology</topic><topic>Oligopeptides - metabolism</topic><topic>Physical Sciences</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Polysaccharides</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Substrate Specificity</topic><topic>Uridine Diphosphate - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>May, John F</creatorcontrib><creatorcontrib>Splain, Rebecca A</creatorcontrib><creatorcontrib>Brotschi, Christine</creatorcontrib><creatorcontrib>Kiessling, Laura L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>May, John F</au><au>Splain, Rebecca A</au><au>Brotschi, Christine</au><au>Kiessling, Laura L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>tethering mechanism for length control in a processive carbohydrate polymerization</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-07-21</date><risdate>2009</risdate><volume>106</volume><issue>29</issue><spage>11851</spage><epage>11856</epage><pages>11851-11856</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Carbohydrate polymers are the most abundant organic substances on earth. Their degrees of polymerization range from tens to thousands of units, yet polymerases generate the relevant lengths without the aid of a template. To gain insight into template-independent length control, we investigated how the mycobacterial galactofuranosyltransferase GlfT2 mediates formation of the galactan, a polymer of galactofuranose residues that is an integral part of the cell wall. We show that isolated recombinant GlfT2 can catalyze the synthesis of polymers with degrees of polymerization that are commensurate with values observed in mycobacteria, indicating that length control by GlfT2 is intrinsic. Investigations using synthetic substrates reveal that GlfT2 is processive. The data indicate that GlfT2 controls length by using a substrate tether, which is distal from the site of elongation. The strength of interaction of that tether with the polymerase influences the length of the resultant polymer. Thus, our data identify a mechanism for length control by a template-independent polymerase.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19571009</pmid><doi>10.1073/pnas.0901407106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2009-07, Vol.106 (29), p.11851-11856
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_67507954
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Bacteria
Bacterial Proteins - metabolism
Biological Sciences
Biosynthesis
Carbohydrates
Carbohydrates - chemistry
Catalysis
Cell walls
Chemical synthesis
Data processing
Elongation
Enzymes
Galactans
Galactans - biosynthesis
Galactans - chemistry
Histidine - metabolism
Lipids
Models, Molecular
Monomers
Mycobacterium
Mycobacterium tuberculosis - enzymology
Oligopeptides - metabolism
Physical Sciences
Polymerization
Polymers
Polymers - chemistry
Polysaccharides
Recombinant Fusion Proteins - metabolism
Substrate Specificity
Uridine Diphosphate - metabolism
title tethering mechanism for length control in a processive carbohydrate polymerization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=tethering%20mechanism%20for%20length%20control%20in%20a%20processive%20carbohydrate%20polymerization&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=May,%20John%20F&rft.date=2009-07-21&rft.volume=106&rft.issue=29&rft.spage=11851&rft.epage=11856&rft.pages=11851-11856&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0901407106&rft_dat=%3Cjstor_proqu%3E40484046%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201415677&rft_id=info:pmid/19571009&rft_jstor_id=40484046&rfr_iscdi=true