tethering mechanism for length control in a processive carbohydrate polymerization
Carbohydrate polymers are the most abundant organic substances on earth. Their degrees of polymerization range from tens to thousands of units, yet polymerases generate the relevant lengths without the aid of a template. To gain insight into template-independent length control, we investigated how t...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-07, Vol.106 (29), p.11851-11856 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11856 |
---|---|
container_issue | 29 |
container_start_page | 11851 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 106 |
creator | May, John F Splain, Rebecca A Brotschi, Christine Kiessling, Laura L |
description | Carbohydrate polymers are the most abundant organic substances on earth. Their degrees of polymerization range from tens to thousands of units, yet polymerases generate the relevant lengths without the aid of a template. To gain insight into template-independent length control, we investigated how the mycobacterial galactofuranosyltransferase GlfT2 mediates formation of the galactan, a polymer of galactofuranose residues that is an integral part of the cell wall. We show that isolated recombinant GlfT2 can catalyze the synthesis of polymers with degrees of polymerization that are commensurate with values observed in mycobacteria, indicating that length control by GlfT2 is intrinsic. Investigations using synthetic substrates reveal that GlfT2 is processive. The data indicate that GlfT2 controls length by using a substrate tether, which is distal from the site of elongation. The strength of interaction of that tether with the polymerase influences the length of the resultant polymer. Thus, our data identify a mechanism for length control by a template-independent polymerase. |
doi_str_mv | 10.1073/pnas.0901407106 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67507954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40484046</jstor_id><sourcerecordid>40484046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-d04fea7dba1eb0f99fabe695b4503e34b256533f656155f5fb9c323a7a34e75d3</originalsourceid><addsrcrecordid>eNqFkc-L1DAUx4so7rh69qQWD4KH7r40v5qLIIu_YEFQ9xzSNplmaJOapIvjX2_KDDvqZQ8hh_d5H95736J4juACAceXs1PxAgQgAhwBe1BsEAhUMSLgYbEBqHnVkJqcFU9i3AGAoA08Ls6QoBkHsSm-JZ0GHazblpPuBuVsnErjQzlqt01D2XmXgh9L60pVzsF3OkZ7q8tOhdYP-z6opMvZj_spS36rZL17Wjwyaoz62fE_L24-fvhx9bm6_vrpy9X766pjNaSqB2K04n2rkG7BCGFUq5mgLaGANSZtTRnF2DDKEKWGmlZ0uMaKK0w0pz0-L94dvPPSTrrvdJ5UjXIOdlJhL72y8t-Ks4Pc-ltZc0RJ02TBm6Mg-J-LjklONnZ6HJXTfomScQpcUHIvWEMDDNPV-Po_cOeX4PIVMoMIoozzDF0eoC74GIM2dyMjkGuqck1VnlLNHS__3vTEH2PMQHkE1s6TjslaSIQaijLy9h5EmmUck_6VMvviwO5i8uEOJkCa_NZ5Xh3qRnmptsFGefM9L4gBsXwFRvAfWEXLGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201415677</pqid></control><display><type>article</type><title>tethering mechanism for length control in a processive carbohydrate polymerization</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>May, John F ; Splain, Rebecca A ; Brotschi, Christine ; Kiessling, Laura L</creator><creatorcontrib>May, John F ; Splain, Rebecca A ; Brotschi, Christine ; Kiessling, Laura L</creatorcontrib><description>Carbohydrate polymers are the most abundant organic substances on earth. Their degrees of polymerization range from tens to thousands of units, yet polymerases generate the relevant lengths without the aid of a template. To gain insight into template-independent length control, we investigated how the mycobacterial galactofuranosyltransferase GlfT2 mediates formation of the galactan, a polymer of galactofuranose residues that is an integral part of the cell wall. We show that isolated recombinant GlfT2 can catalyze the synthesis of polymers with degrees of polymerization that are commensurate with values observed in mycobacteria, indicating that length control by GlfT2 is intrinsic. Investigations using synthetic substrates reveal that GlfT2 is processive. The data indicate that GlfT2 controls length by using a substrate tether, which is distal from the site of elongation. The strength of interaction of that tether with the polymerase influences the length of the resultant polymer. Thus, our data identify a mechanism for length control by a template-independent polymerase.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0901407106</identifier><identifier>PMID: 19571009</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteria ; Bacterial Proteins - metabolism ; Biological Sciences ; Biosynthesis ; Carbohydrates ; Carbohydrates - chemistry ; Catalysis ; Cell walls ; Chemical synthesis ; Data processing ; Elongation ; Enzymes ; Galactans ; Galactans - biosynthesis ; Galactans - chemistry ; Histidine - metabolism ; Lipids ; Models, Molecular ; Monomers ; Mycobacterium ; Mycobacterium tuberculosis - enzymology ; Oligopeptides - metabolism ; Physical Sciences ; Polymerization ; Polymers ; Polymers - chemistry ; Polysaccharides ; Recombinant Fusion Proteins - metabolism ; Substrate Specificity ; Uridine Diphosphate - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-07, Vol.106 (29), p.11851-11856</ispartof><rights>Copyright National Academy of Sciences Jul 21, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-d04fea7dba1eb0f99fabe695b4503e34b256533f656155f5fb9c323a7a34e75d3</citedby><cites>FETCH-LOGICAL-c620t-d04fea7dba1eb0f99fabe695b4503e34b256533f656155f5fb9c323a7a34e75d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/29.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40484046$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40484046$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19571009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>May, John F</creatorcontrib><creatorcontrib>Splain, Rebecca A</creatorcontrib><creatorcontrib>Brotschi, Christine</creatorcontrib><creatorcontrib>Kiessling, Laura L</creatorcontrib><title>tethering mechanism for length control in a processive carbohydrate polymerization</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Carbohydrate polymers are the most abundant organic substances on earth. Their degrees of polymerization range from tens to thousands of units, yet polymerases generate the relevant lengths without the aid of a template. To gain insight into template-independent length control, we investigated how the mycobacterial galactofuranosyltransferase GlfT2 mediates formation of the galactan, a polymer of galactofuranose residues that is an integral part of the cell wall. We show that isolated recombinant GlfT2 can catalyze the synthesis of polymers with degrees of polymerization that are commensurate with values observed in mycobacteria, indicating that length control by GlfT2 is intrinsic. Investigations using synthetic substrates reveal that GlfT2 is processive. The data indicate that GlfT2 controls length by using a substrate tether, which is distal from the site of elongation. The strength of interaction of that tether with the polymerase influences the length of the resultant polymer. Thus, our data identify a mechanism for length control by a template-independent polymerase.</description><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Carbohydrates</subject><subject>Carbohydrates - chemistry</subject><subject>Catalysis</subject><subject>Cell walls</subject><subject>Chemical synthesis</subject><subject>Data processing</subject><subject>Elongation</subject><subject>Enzymes</subject><subject>Galactans</subject><subject>Galactans - biosynthesis</subject><subject>Galactans - chemistry</subject><subject>Histidine - metabolism</subject><subject>Lipids</subject><subject>Models, Molecular</subject><subject>Monomers</subject><subject>Mycobacterium</subject><subject>Mycobacterium tuberculosis - enzymology</subject><subject>Oligopeptides - metabolism</subject><subject>Physical Sciences</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Polysaccharides</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Substrate Specificity</subject><subject>Uridine Diphosphate - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc-L1DAUx4so7rh69qQWD4KH7r40v5qLIIu_YEFQ9xzSNplmaJOapIvjX2_KDDvqZQ8hh_d5H95736J4juACAceXs1PxAgQgAhwBe1BsEAhUMSLgYbEBqHnVkJqcFU9i3AGAoA08Ls6QoBkHsSm-JZ0GHazblpPuBuVsnErjQzlqt01D2XmXgh9L60pVzsF3OkZ7q8tOhdYP-z6opMvZj_spS36rZL17Wjwyaoz62fE_L24-fvhx9bm6_vrpy9X766pjNaSqB2K04n2rkG7BCGFUq5mgLaGANSZtTRnF2DDKEKWGmlZ0uMaKK0w0pz0-L94dvPPSTrrvdJ5UjXIOdlJhL72y8t-Ks4Pc-ltZc0RJ02TBm6Mg-J-LjklONnZ6HJXTfomScQpcUHIvWEMDDNPV-Po_cOeX4PIVMoMIoozzDF0eoC74GIM2dyMjkGuqck1VnlLNHS__3vTEH2PMQHkE1s6TjslaSIQaijLy9h5EmmUck_6VMvviwO5i8uEOJkCa_NZ5Xh3qRnmptsFGefM9L4gBsXwFRvAfWEXLGA</recordid><startdate>20090721</startdate><enddate>20090721</enddate><creator>May, John F</creator><creator>Splain, Rebecca A</creator><creator>Brotschi, Christine</creator><creator>Kiessling, Laura L</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090721</creationdate><title>tethering mechanism for length control in a processive carbohydrate polymerization</title><author>May, John F ; Splain, Rebecca A ; Brotschi, Christine ; Kiessling, Laura L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-d04fea7dba1eb0f99fabe695b4503e34b256533f656155f5fb9c323a7a34e75d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Carbohydrates</topic><topic>Carbohydrates - chemistry</topic><topic>Catalysis</topic><topic>Cell walls</topic><topic>Chemical synthesis</topic><topic>Data processing</topic><topic>Elongation</topic><topic>Enzymes</topic><topic>Galactans</topic><topic>Galactans - biosynthesis</topic><topic>Galactans - chemistry</topic><topic>Histidine - metabolism</topic><topic>Lipids</topic><topic>Models, Molecular</topic><topic>Monomers</topic><topic>Mycobacterium</topic><topic>Mycobacterium tuberculosis - enzymology</topic><topic>Oligopeptides - metabolism</topic><topic>Physical Sciences</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Polysaccharides</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Substrate Specificity</topic><topic>Uridine Diphosphate - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>May, John F</creatorcontrib><creatorcontrib>Splain, Rebecca A</creatorcontrib><creatorcontrib>Brotschi, Christine</creatorcontrib><creatorcontrib>Kiessling, Laura L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>May, John F</au><au>Splain, Rebecca A</au><au>Brotschi, Christine</au><au>Kiessling, Laura L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>tethering mechanism for length control in a processive carbohydrate polymerization</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-07-21</date><risdate>2009</risdate><volume>106</volume><issue>29</issue><spage>11851</spage><epage>11856</epage><pages>11851-11856</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Carbohydrate polymers are the most abundant organic substances on earth. Their degrees of polymerization range from tens to thousands of units, yet polymerases generate the relevant lengths without the aid of a template. To gain insight into template-independent length control, we investigated how the mycobacterial galactofuranosyltransferase GlfT2 mediates formation of the galactan, a polymer of galactofuranose residues that is an integral part of the cell wall. We show that isolated recombinant GlfT2 can catalyze the synthesis of polymers with degrees of polymerization that are commensurate with values observed in mycobacteria, indicating that length control by GlfT2 is intrinsic. Investigations using synthetic substrates reveal that GlfT2 is processive. The data indicate that GlfT2 controls length by using a substrate tether, which is distal from the site of elongation. The strength of interaction of that tether with the polymerase influences the length of the resultant polymer. Thus, our data identify a mechanism for length control by a template-independent polymerase.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19571009</pmid><doi>10.1073/pnas.0901407106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2009-07, Vol.106 (29), p.11851-11856 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_67507954 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bacteria Bacterial Proteins - metabolism Biological Sciences Biosynthesis Carbohydrates Carbohydrates - chemistry Catalysis Cell walls Chemical synthesis Data processing Elongation Enzymes Galactans Galactans - biosynthesis Galactans - chemistry Histidine - metabolism Lipids Models, Molecular Monomers Mycobacterium Mycobacterium tuberculosis - enzymology Oligopeptides - metabolism Physical Sciences Polymerization Polymers Polymers - chemistry Polysaccharides Recombinant Fusion Proteins - metabolism Substrate Specificity Uridine Diphosphate - metabolism |
title | tethering mechanism for length control in a processive carbohydrate polymerization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=tethering%20mechanism%20for%20length%20control%20in%20a%20processive%20carbohydrate%20polymerization&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=May,%20John%20F&rft.date=2009-07-21&rft.volume=106&rft.issue=29&rft.spage=11851&rft.epage=11856&rft.pages=11851-11856&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0901407106&rft_dat=%3Cjstor_proqu%3E40484046%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201415677&rft_id=info:pmid/19571009&rft_jstor_id=40484046&rfr_iscdi=true |