Deuterated palmitate-driven acylcarnitine formation by whole-blood samples for a rapid diagnostic exploration of mitochondrial fatty acid oxidation disorders

The biochemical diagnosis of mitochondrial fatty acid oxidation defects (FAOD) currently rests on enzyme assays. A dynamic ex vivo exploration consisting of incubations of whole-blood samples with stable-labeled palmitate and determining leukocyte capacities to produce deuterated acylcarnitines was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinica chimica acta 2009-08, Vol.406 (1), p.23-26
Hauptverfasser: Dessein, Anne-Frédérique, Fontaine, Monique, Dobbelaere, Dries, Mention-Mulliez, Karine, Martin-Ponthieu, Annie, Briand, Gilbert, Vamecq, Joseph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 1
container_start_page 23
container_title Clinica chimica acta
container_volume 406
creator Dessein, Anne-Frédérique
Fontaine, Monique
Dobbelaere, Dries
Mention-Mulliez, Karine
Martin-Ponthieu, Annie
Briand, Gilbert
Vamecq, Joseph
description The biochemical diagnosis of mitochondrial fatty acid oxidation defects (FAOD) currently rests on enzyme assays. A dynamic ex vivo exploration consisting of incubations of whole-blood samples with stable-labeled palmitate and determining leukocyte capacities to produce deuterated acylcarnitines was developed on healthy controls ( n = 52) and patients with very-long- (VLCADD) ( n = 2), medium- (MCADD) ( n = 6), or short- (SCADD) ( n = 1) chain acyl-CoA dehydrogenase deficiencies. Incubations were optimized with l-carnitine and [16- 2H 3, 15- 2H 2]-palmitate at 37 °C for various time periods on MCADD and control whole-blood samples. Labeled acylcarnitines were quantified by electrospray-ionization tandem mass spectrometry after thawing, extraction and derivatization to their butyl esters and the method was applied to patients with defects mentioned above. The production of acylcarnitines was linear until 6 h of incubation and optimal on 50 to 200 nmol deuterated substrate. A good discrimination between MCADD patient and control data was found, with median C8/C4 acylcarnitine production rate ratios of 81.0 (5th–95th percentile range: 16.6–209.9) and 0.21 (5th–95th percentile range: 0.06–0.79), respectively. The method also discriminated from controls the VLCADD and SCADD patients. Preliminary studies on a healthy control indicated that the storage at 4 °C does little or not alter capacities of whole-blood samples to generate labeled acylcarnitines over a period of 48 h. The rapid management afforded by the method, its abilities to characterize patients and to work on whole-blood samples after a stay of 24–48 h at 4 °C make it promising for the diagnostic exploration of FAOD.
doi_str_mv 10.1016/j.cca.2009.04.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67501078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009898109002290</els_id><sourcerecordid>67501078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-46d63e3cf921976196bd04568bc6f6f5ff56e2f743f4176cc6b07653d0d20673</originalsourceid><addsrcrecordid>eNp9kU9P5SAUxYkZo2_UDzCbCSt3rdBS2saV8d-YmLhxTyhclBdaKvDU92H8rvLSl7ib1eWG3zknNwehP5SUlFB-sS6VkmVFSF8SVpKKH6AV7dq6qFlf_UIrkn-Kru_oMfod4zqvjHB6hI5pz6qqo2yFvm5gkyDIBBrP0o025Wehg32HCUu1dUqGySY7ATY-jDJZP-Fhiz9evYNicN5rHOU4O4g7AEsc5Gw11la-TD4mqzB8zs6HRekNzhFevfopZ0iHjUxpm4OyxH9avVDaRh80hHiKDo10Ec728wQ9390-X_8rHp_uH66vHgtVNzQVjGteQ61MX9G-5bTngyas4d2guOGmMabhUJmW1YbRlivFB9LyptZEV4S39Qk6X2zn4N82EJMYbVTgnJzAb6LgbUMoabsM0gVUwccYwIg52FGGraBE7CoRa5ErEbtKBGEiV5I1f_fmm2EE_aPYd5CBywWAfOG7hSCisjAp0DaASkJ7-x_7b4xaoF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67501078</pqid></control><display><type>article</type><title>Deuterated palmitate-driven acylcarnitine formation by whole-blood samples for a rapid diagnostic exploration of mitochondrial fatty acid oxidation disorders</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Dessein, Anne-Frédérique ; Fontaine, Monique ; Dobbelaere, Dries ; Mention-Mulliez, Karine ; Martin-Ponthieu, Annie ; Briand, Gilbert ; Vamecq, Joseph</creator><creatorcontrib>Dessein, Anne-Frédérique ; Fontaine, Monique ; Dobbelaere, Dries ; Mention-Mulliez, Karine ; Martin-Ponthieu, Annie ; Briand, Gilbert ; Vamecq, Joseph</creatorcontrib><description>The biochemical diagnosis of mitochondrial fatty acid oxidation defects (FAOD) currently rests on enzyme assays. A dynamic ex vivo exploration consisting of incubations of whole-blood samples with stable-labeled palmitate and determining leukocyte capacities to produce deuterated acylcarnitines was developed on healthy controls ( n = 52) and patients with very-long- (VLCADD) ( n = 2), medium- (MCADD) ( n = 6), or short- (SCADD) ( n = 1) chain acyl-CoA dehydrogenase deficiencies. Incubations were optimized with l-carnitine and [16- 2H 3, 15- 2H 2]-palmitate at 37 °C for various time periods on MCADD and control whole-blood samples. Labeled acylcarnitines were quantified by electrospray-ionization tandem mass spectrometry after thawing, extraction and derivatization to their butyl esters and the method was applied to patients with defects mentioned above. The production of acylcarnitines was linear until 6 h of incubation and optimal on 50 to 200 nmol deuterated substrate. A good discrimination between MCADD patient and control data was found, with median C8/C4 acylcarnitine production rate ratios of 81.0 (5th–95th percentile range: 16.6–209.9) and 0.21 (5th–95th percentile range: 0.06–0.79), respectively. The method also discriminated from controls the VLCADD and SCADD patients. Preliminary studies on a healthy control indicated that the storage at 4 °C does little or not alter capacities of whole-blood samples to generate labeled acylcarnitines over a period of 48 h. The rapid management afforded by the method, its abilities to characterize patients and to work on whole-blood samples after a stay of 24–48 h at 4 °C make it promising for the diagnostic exploration of FAOD.</description><identifier>ISSN: 0009-8981</identifier><identifier>EISSN: 1873-3492</identifier><identifier>DOI: 10.1016/j.cca.2009.04.026</identifier><identifier>PMID: 19422814</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Acyl-CoA Dehydrogenases - deficiency ; Acyl-CoA Dehydrogenases - genetics ; Acylcarnitines ; Adult ; Blood Specimen Collection ; Carnitine - analogs &amp; derivatives ; Carnitine - biosynthesis ; Carnitine - blood ; Case-Control Studies ; Child ; Child, Preschool ; Deuterium - metabolism ; FAOD ; Fatty Acids - metabolism ; Female ; Humans ; Infant ; Infant, Newborn ; Kinetics ; Male ; MCAD ; Mitochondrial Diseases - blood ; Mitochondrial Diseases - diagnosis ; Mitochondrial Diseases - genetics ; Mitochondrial Diseases - metabolism ; Mutation ; Oxidation-Reduction ; Palmitates - metabolism ; SCAD ; Stable-labeled palmitate ; Tandem mass spectrometry ; Time Factors ; VLCAD ; Whole blood</subject><ispartof>Clinica chimica acta, 2009-08, Vol.406 (1), p.23-26</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-46d63e3cf921976196bd04568bc6f6f5ff56e2f743f4176cc6b07653d0d20673</citedby><cites>FETCH-LOGICAL-c351t-46d63e3cf921976196bd04568bc6f6f5ff56e2f743f4176cc6b07653d0d20673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cca.2009.04.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19422814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dessein, Anne-Frédérique</creatorcontrib><creatorcontrib>Fontaine, Monique</creatorcontrib><creatorcontrib>Dobbelaere, Dries</creatorcontrib><creatorcontrib>Mention-Mulliez, Karine</creatorcontrib><creatorcontrib>Martin-Ponthieu, Annie</creatorcontrib><creatorcontrib>Briand, Gilbert</creatorcontrib><creatorcontrib>Vamecq, Joseph</creatorcontrib><title>Deuterated palmitate-driven acylcarnitine formation by whole-blood samples for a rapid diagnostic exploration of mitochondrial fatty acid oxidation disorders</title><title>Clinica chimica acta</title><addtitle>Clin Chim Acta</addtitle><description>The biochemical diagnosis of mitochondrial fatty acid oxidation defects (FAOD) currently rests on enzyme assays. A dynamic ex vivo exploration consisting of incubations of whole-blood samples with stable-labeled palmitate and determining leukocyte capacities to produce deuterated acylcarnitines was developed on healthy controls ( n = 52) and patients with very-long- (VLCADD) ( n = 2), medium- (MCADD) ( n = 6), or short- (SCADD) ( n = 1) chain acyl-CoA dehydrogenase deficiencies. Incubations were optimized with l-carnitine and [16- 2H 3, 15- 2H 2]-palmitate at 37 °C for various time periods on MCADD and control whole-blood samples. Labeled acylcarnitines were quantified by electrospray-ionization tandem mass spectrometry after thawing, extraction and derivatization to their butyl esters and the method was applied to patients with defects mentioned above. The production of acylcarnitines was linear until 6 h of incubation and optimal on 50 to 200 nmol deuterated substrate. A good discrimination between MCADD patient and control data was found, with median C8/C4 acylcarnitine production rate ratios of 81.0 (5th–95th percentile range: 16.6–209.9) and 0.21 (5th–95th percentile range: 0.06–0.79), respectively. The method also discriminated from controls the VLCADD and SCADD patients. Preliminary studies on a healthy control indicated that the storage at 4 °C does little or not alter capacities of whole-blood samples to generate labeled acylcarnitines over a period of 48 h. The rapid management afforded by the method, its abilities to characterize patients and to work on whole-blood samples after a stay of 24–48 h at 4 °C make it promising for the diagnostic exploration of FAOD.</description><subject>Acyl-CoA Dehydrogenases - deficiency</subject><subject>Acyl-CoA Dehydrogenases - genetics</subject><subject>Acylcarnitines</subject><subject>Adult</subject><subject>Blood Specimen Collection</subject><subject>Carnitine - analogs &amp; derivatives</subject><subject>Carnitine - biosynthesis</subject><subject>Carnitine - blood</subject><subject>Case-Control Studies</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Deuterium - metabolism</subject><subject>FAOD</subject><subject>Fatty Acids - metabolism</subject><subject>Female</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Kinetics</subject><subject>Male</subject><subject>MCAD</subject><subject>Mitochondrial Diseases - blood</subject><subject>Mitochondrial Diseases - diagnosis</subject><subject>Mitochondrial Diseases - genetics</subject><subject>Mitochondrial Diseases - metabolism</subject><subject>Mutation</subject><subject>Oxidation-Reduction</subject><subject>Palmitates - metabolism</subject><subject>SCAD</subject><subject>Stable-labeled palmitate</subject><subject>Tandem mass spectrometry</subject><subject>Time Factors</subject><subject>VLCAD</subject><subject>Whole blood</subject><issn>0009-8981</issn><issn>1873-3492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9P5SAUxYkZo2_UDzCbCSt3rdBS2saV8d-YmLhxTyhclBdaKvDU92H8rvLSl7ib1eWG3zknNwehP5SUlFB-sS6VkmVFSF8SVpKKH6AV7dq6qFlf_UIrkn-Kru_oMfod4zqvjHB6hI5pz6qqo2yFvm5gkyDIBBrP0o025Wehg32HCUu1dUqGySY7ATY-jDJZP-Fhiz9evYNicN5rHOU4O4g7AEsc5Gw11la-TD4mqzB8zs6HRekNzhFevfopZ0iHjUxpm4OyxH9avVDaRh80hHiKDo10Ec728wQ9390-X_8rHp_uH66vHgtVNzQVjGteQ61MX9G-5bTngyas4d2guOGmMabhUJmW1YbRlivFB9LyptZEV4S39Qk6X2zn4N82EJMYbVTgnJzAb6LgbUMoabsM0gVUwccYwIg52FGGraBE7CoRa5ErEbtKBGEiV5I1f_fmm2EE_aPYd5CBywWAfOG7hSCisjAp0DaASkJ7-x_7b4xaoF0</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Dessein, Anne-Frédérique</creator><creator>Fontaine, Monique</creator><creator>Dobbelaere, Dries</creator><creator>Mention-Mulliez, Karine</creator><creator>Martin-Ponthieu, Annie</creator><creator>Briand, Gilbert</creator><creator>Vamecq, Joseph</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200908</creationdate><title>Deuterated palmitate-driven acylcarnitine formation by whole-blood samples for a rapid diagnostic exploration of mitochondrial fatty acid oxidation disorders</title><author>Dessein, Anne-Frédérique ; Fontaine, Monique ; Dobbelaere, Dries ; Mention-Mulliez, Karine ; Martin-Ponthieu, Annie ; Briand, Gilbert ; Vamecq, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-46d63e3cf921976196bd04568bc6f6f5ff56e2f743f4176cc6b07653d0d20673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acyl-CoA Dehydrogenases - deficiency</topic><topic>Acyl-CoA Dehydrogenases - genetics</topic><topic>Acylcarnitines</topic><topic>Adult</topic><topic>Blood Specimen Collection</topic><topic>Carnitine - analogs &amp; derivatives</topic><topic>Carnitine - biosynthesis</topic><topic>Carnitine - blood</topic><topic>Case-Control Studies</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Deuterium - metabolism</topic><topic>FAOD</topic><topic>Fatty Acids - metabolism</topic><topic>Female</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Kinetics</topic><topic>Male</topic><topic>MCAD</topic><topic>Mitochondrial Diseases - blood</topic><topic>Mitochondrial Diseases - diagnosis</topic><topic>Mitochondrial Diseases - genetics</topic><topic>Mitochondrial Diseases - metabolism</topic><topic>Mutation</topic><topic>Oxidation-Reduction</topic><topic>Palmitates - metabolism</topic><topic>SCAD</topic><topic>Stable-labeled palmitate</topic><topic>Tandem mass spectrometry</topic><topic>Time Factors</topic><topic>VLCAD</topic><topic>Whole blood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dessein, Anne-Frédérique</creatorcontrib><creatorcontrib>Fontaine, Monique</creatorcontrib><creatorcontrib>Dobbelaere, Dries</creatorcontrib><creatorcontrib>Mention-Mulliez, Karine</creatorcontrib><creatorcontrib>Martin-Ponthieu, Annie</creatorcontrib><creatorcontrib>Briand, Gilbert</creatorcontrib><creatorcontrib>Vamecq, Joseph</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dessein, Anne-Frédérique</au><au>Fontaine, Monique</au><au>Dobbelaere, Dries</au><au>Mention-Mulliez, Karine</au><au>Martin-Ponthieu, Annie</au><au>Briand, Gilbert</au><au>Vamecq, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deuterated palmitate-driven acylcarnitine formation by whole-blood samples for a rapid diagnostic exploration of mitochondrial fatty acid oxidation disorders</atitle><jtitle>Clinica chimica acta</jtitle><addtitle>Clin Chim Acta</addtitle><date>2009-08</date><risdate>2009</risdate><volume>406</volume><issue>1</issue><spage>23</spage><epage>26</epage><pages>23-26</pages><issn>0009-8981</issn><eissn>1873-3492</eissn><abstract>The biochemical diagnosis of mitochondrial fatty acid oxidation defects (FAOD) currently rests on enzyme assays. A dynamic ex vivo exploration consisting of incubations of whole-blood samples with stable-labeled palmitate and determining leukocyte capacities to produce deuterated acylcarnitines was developed on healthy controls ( n = 52) and patients with very-long- (VLCADD) ( n = 2), medium- (MCADD) ( n = 6), or short- (SCADD) ( n = 1) chain acyl-CoA dehydrogenase deficiencies. Incubations were optimized with l-carnitine and [16- 2H 3, 15- 2H 2]-palmitate at 37 °C for various time periods on MCADD and control whole-blood samples. Labeled acylcarnitines were quantified by electrospray-ionization tandem mass spectrometry after thawing, extraction and derivatization to their butyl esters and the method was applied to patients with defects mentioned above. The production of acylcarnitines was linear until 6 h of incubation and optimal on 50 to 200 nmol deuterated substrate. A good discrimination between MCADD patient and control data was found, with median C8/C4 acylcarnitine production rate ratios of 81.0 (5th–95th percentile range: 16.6–209.9) and 0.21 (5th–95th percentile range: 0.06–0.79), respectively. The method also discriminated from controls the VLCADD and SCADD patients. Preliminary studies on a healthy control indicated that the storage at 4 °C does little or not alter capacities of whole-blood samples to generate labeled acylcarnitines over a period of 48 h. The rapid management afforded by the method, its abilities to characterize patients and to work on whole-blood samples after a stay of 24–48 h at 4 °C make it promising for the diagnostic exploration of FAOD.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>19422814</pmid><doi>10.1016/j.cca.2009.04.026</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-8981
ispartof Clinica chimica acta, 2009-08, Vol.406 (1), p.23-26
issn 0009-8981
1873-3492
language eng
recordid cdi_proquest_miscellaneous_67501078
source MEDLINE; Elsevier ScienceDirect Journals
subjects Acyl-CoA Dehydrogenases - deficiency
Acyl-CoA Dehydrogenases - genetics
Acylcarnitines
Adult
Blood Specimen Collection
Carnitine - analogs & derivatives
Carnitine - biosynthesis
Carnitine - blood
Case-Control Studies
Child
Child, Preschool
Deuterium - metabolism
FAOD
Fatty Acids - metabolism
Female
Humans
Infant
Infant, Newborn
Kinetics
Male
MCAD
Mitochondrial Diseases - blood
Mitochondrial Diseases - diagnosis
Mitochondrial Diseases - genetics
Mitochondrial Diseases - metabolism
Mutation
Oxidation-Reduction
Palmitates - metabolism
SCAD
Stable-labeled palmitate
Tandem mass spectrometry
Time Factors
VLCAD
Whole blood
title Deuterated palmitate-driven acylcarnitine formation by whole-blood samples for a rapid diagnostic exploration of mitochondrial fatty acid oxidation disorders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A40%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deuterated%20palmitate-driven%20acylcarnitine%20formation%20by%20whole-blood%20samples%20for%20a%20rapid%20diagnostic%20exploration%20of%20mitochondrial%20fatty%20acid%20oxidation%20disorders&rft.jtitle=Clinica%20chimica%20acta&rft.au=Dessein,%20Anne-Fr%C3%A9d%C3%A9rique&rft.date=2009-08&rft.volume=406&rft.issue=1&rft.spage=23&rft.epage=26&rft.pages=23-26&rft.issn=0009-8981&rft.eissn=1873-3492&rft_id=info:doi/10.1016/j.cca.2009.04.026&rft_dat=%3Cproquest_cross%3E67501078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67501078&rft_id=info:pmid/19422814&rft_els_id=S0009898109002290&rfr_iscdi=true