Knowledge based identification of MAO-B selective inhibitors using pharmacophore and structure based virtual screening models

Monoamine Oxidase B interaction with known ligands was investigated using combined pharmacophore and structure based modeling approach. The docking results suggested that the pharmacophore and docking models are in good agreement and are used to identify the selective MAO-B inhibitors. The best mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of medicinal chemistry 2009-09, Vol.44 (9), p.3584-3590
Hauptverfasser: Boppana, Kiran, Dubey, P.K., Jagarlapudi, Sarma A.R.P., Vadivelan, S., Rambabu, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3590
container_issue 9
container_start_page 3584
container_title European journal of medicinal chemistry
container_volume 44
creator Boppana, Kiran
Dubey, P.K.
Jagarlapudi, Sarma A.R.P.
Vadivelan, S.
Rambabu, G.
description Monoamine Oxidase B interaction with known ligands was investigated using combined pharmacophore and structure based modeling approach. The docking results suggested that the pharmacophore and docking models are in good agreement and are used to identify the selective MAO-B inhibitors. The best model, Hypo2 consists of three pharmacophore features, i.e., one hydrogen bond acceptor, one hydrogen bond donor and one ring aromatic. The Hypo2 model was used to screen an in-house database of 80,000 molecules and have resulted in 5500 compounds. Docking studies were performed, subsequently, on the cluster representatives of 530 hits from 5500 compounds. Based on the structural novelty and selectivity index, we have suggested 15 selective MAO-B inhibitors for further synthesis and pharmacological screening. [Display omitted] Hypo2 quantitative pharmacophore model of selective MAO B inhibitor which shows good prediction of training and test set compounds was compared to other nine hypotheses.
doi_str_mv 10.1016/j.ejmech.2009.02.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67498277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0223523409001184</els_id><sourcerecordid>67498277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-a8e158fb65683e556bca601dda774cd5cd7d2a0946b2f57b42d21292f463aec3</originalsourceid><addsrcrecordid>eNp9kE1v1DAURS0EokPhHyDkDewS_BHbyQapVFAQRd10bzn2S8ejxB78kqlY8N_JaAbYsXqbc6_uO4S85qzmjOv3uxp2E_htLRjraiZqJvkTsuFGt5UUqnlKNkwIWSkhmwvyAnHHGFOasefkgndScCHVhvz6lvLjCOEBaO8QAo0B0hyH6N0cc6J5oN-v7qqPFGEEP8cD0Ji2sY9zLkgXjOmB7reuTM7n_TYXoC4FinNZ_LyUP6WHWObFjRR9AUjHzJQDjPiSPBvciPDqfC_J_edP99dfqtu7m6_XV7eVlx2bK9cCV-3Qa6VbCUrp3jvNeAjOmMYH5YMJwrGu0b0YlOkbEdb3OjE0Wjrw8pK8O9XuS_6xAM52iuhhHF2CvKDVpulaYcwKNifQl4xYYLD7EidXflrO7NG63dmTdXu0bpmwq_U19ubcv_QThH-hs-YVeHsGHHo3DsUlH_EvJ7gxRmm5ch9O3OoGDhGKRR8heQixrPZtyPH_S34DPh6kpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67498277</pqid></control><display><type>article</type><title>Knowledge based identification of MAO-B selective inhibitors using pharmacophore and structure based virtual screening models</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Boppana, Kiran ; Dubey, P.K. ; Jagarlapudi, Sarma A.R.P. ; Vadivelan, S. ; Rambabu, G.</creator><creatorcontrib>Boppana, Kiran ; Dubey, P.K. ; Jagarlapudi, Sarma A.R.P. ; Vadivelan, S. ; Rambabu, G.</creatorcontrib><description>Monoamine Oxidase B interaction with known ligands was investigated using combined pharmacophore and structure based modeling approach. The docking results suggested that the pharmacophore and docking models are in good agreement and are used to identify the selective MAO-B inhibitors. The best model, Hypo2 consists of three pharmacophore features, i.e., one hydrogen bond acceptor, one hydrogen bond donor and one ring aromatic. The Hypo2 model was used to screen an in-house database of 80,000 molecules and have resulted in 5500 compounds. Docking studies were performed, subsequently, on the cluster representatives of 530 hits from 5500 compounds. Based on the structural novelty and selectivity index, we have suggested 15 selective MAO-B inhibitors for further synthesis and pharmacological screening. [Display omitted] Hypo2 quantitative pharmacophore model of selective MAO B inhibitor which shows good prediction of training and test set compounds was compared to other nine hypotheses.</description><identifier>ISSN: 0223-5234</identifier><identifier>EISSN: 1768-3254</identifier><identifier>DOI: 10.1016/j.ejmech.2009.02.031</identifier><identifier>PMID: 19321235</identifier><identifier>CODEN: EJMCA5</identifier><language>eng</language><publisher>Kidlington: Elsevier Masson SAS</publisher><subject>Biological and medical sciences ; Catalyst ; Catalytic Domain ; Docking ; Drug Design ; Glide ; Humans ; MAO-B ; Medical sciences ; Miscellaneous ; Models, Molecular ; Molecular Structure ; Monoamine Oxidase - chemistry ; Monoamine Oxidase - metabolism ; Monoamine Oxidase Inhibitors - chemistry ; Monoamine Oxidase Inhibitors - metabolism ; Neuropharmacology ; Pharmacology. Drug treatments ; Pharmacophore ; Protein Binding ; Structure-Activity Relationship</subject><ispartof>European journal of medicinal chemistry, 2009-09, Vol.44 (9), p.3584-3590</ispartof><rights>2009 Elsevier Masson SAS</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-a8e158fb65683e556bca601dda774cd5cd7d2a0946b2f57b42d21292f463aec3</citedby><cites>FETCH-LOGICAL-c390t-a8e158fb65683e556bca601dda774cd5cd7d2a0946b2f57b42d21292f463aec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejmech.2009.02.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21777563$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19321235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boppana, Kiran</creatorcontrib><creatorcontrib>Dubey, P.K.</creatorcontrib><creatorcontrib>Jagarlapudi, Sarma A.R.P.</creatorcontrib><creatorcontrib>Vadivelan, S.</creatorcontrib><creatorcontrib>Rambabu, G.</creatorcontrib><title>Knowledge based identification of MAO-B selective inhibitors using pharmacophore and structure based virtual screening models</title><title>European journal of medicinal chemistry</title><addtitle>Eur J Med Chem</addtitle><description>Monoamine Oxidase B interaction with known ligands was investigated using combined pharmacophore and structure based modeling approach. The docking results suggested that the pharmacophore and docking models are in good agreement and are used to identify the selective MAO-B inhibitors. The best model, Hypo2 consists of three pharmacophore features, i.e., one hydrogen bond acceptor, one hydrogen bond donor and one ring aromatic. The Hypo2 model was used to screen an in-house database of 80,000 molecules and have resulted in 5500 compounds. Docking studies were performed, subsequently, on the cluster representatives of 530 hits from 5500 compounds. Based on the structural novelty and selectivity index, we have suggested 15 selective MAO-B inhibitors for further synthesis and pharmacological screening. [Display omitted] Hypo2 quantitative pharmacophore model of selective MAO B inhibitor which shows good prediction of training and test set compounds was compared to other nine hypotheses.</description><subject>Biological and medical sciences</subject><subject>Catalyst</subject><subject>Catalytic Domain</subject><subject>Docking</subject><subject>Drug Design</subject><subject>Glide</subject><subject>Humans</subject><subject>MAO-B</subject><subject>Medical sciences</subject><subject>Miscellaneous</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>Monoamine Oxidase - chemistry</subject><subject>Monoamine Oxidase - metabolism</subject><subject>Monoamine Oxidase Inhibitors - chemistry</subject><subject>Monoamine Oxidase Inhibitors - metabolism</subject><subject>Neuropharmacology</subject><subject>Pharmacology. Drug treatments</subject><subject>Pharmacophore</subject><subject>Protein Binding</subject><subject>Structure-Activity Relationship</subject><issn>0223-5234</issn><issn>1768-3254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAURS0EokPhHyDkDewS_BHbyQapVFAQRd10bzn2S8ejxB78kqlY8N_JaAbYsXqbc6_uO4S85qzmjOv3uxp2E_htLRjraiZqJvkTsuFGt5UUqnlKNkwIWSkhmwvyAnHHGFOasefkgndScCHVhvz6lvLjCOEBaO8QAo0B0hyH6N0cc6J5oN-v7qqPFGEEP8cD0Ji2sY9zLkgXjOmB7reuTM7n_TYXoC4FinNZ_LyUP6WHWObFjRR9AUjHzJQDjPiSPBvciPDqfC_J_edP99dfqtu7m6_XV7eVlx2bK9cCV-3Qa6VbCUrp3jvNeAjOmMYH5YMJwrGu0b0YlOkbEdb3OjE0Wjrw8pK8O9XuS_6xAM52iuhhHF2CvKDVpulaYcwKNifQl4xYYLD7EidXflrO7NG63dmTdXu0bpmwq_U19ubcv_QThH-hs-YVeHsGHHo3DsUlH_EvJ7gxRmm5ch9O3OoGDhGKRR8heQixrPZtyPH_S34DPh6kpg</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Boppana, Kiran</creator><creator>Dubey, P.K.</creator><creator>Jagarlapudi, Sarma A.R.P.</creator><creator>Vadivelan, S.</creator><creator>Rambabu, G.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090901</creationdate><title>Knowledge based identification of MAO-B selective inhibitors using pharmacophore and structure based virtual screening models</title><author>Boppana, Kiran ; Dubey, P.K. ; Jagarlapudi, Sarma A.R.P. ; Vadivelan, S. ; Rambabu, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-a8e158fb65683e556bca601dda774cd5cd7d2a0946b2f57b42d21292f463aec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological and medical sciences</topic><topic>Catalyst</topic><topic>Catalytic Domain</topic><topic>Docking</topic><topic>Drug Design</topic><topic>Glide</topic><topic>Humans</topic><topic>MAO-B</topic><topic>Medical sciences</topic><topic>Miscellaneous</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>Monoamine Oxidase - chemistry</topic><topic>Monoamine Oxidase - metabolism</topic><topic>Monoamine Oxidase Inhibitors - chemistry</topic><topic>Monoamine Oxidase Inhibitors - metabolism</topic><topic>Neuropharmacology</topic><topic>Pharmacology. Drug treatments</topic><topic>Pharmacophore</topic><topic>Protein Binding</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boppana, Kiran</creatorcontrib><creatorcontrib>Dubey, P.K.</creatorcontrib><creatorcontrib>Jagarlapudi, Sarma A.R.P.</creatorcontrib><creatorcontrib>Vadivelan, S.</creatorcontrib><creatorcontrib>Rambabu, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boppana, Kiran</au><au>Dubey, P.K.</au><au>Jagarlapudi, Sarma A.R.P.</au><au>Vadivelan, S.</au><au>Rambabu, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge based identification of MAO-B selective inhibitors using pharmacophore and structure based virtual screening models</atitle><jtitle>European journal of medicinal chemistry</jtitle><addtitle>Eur J Med Chem</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>44</volume><issue>9</issue><spage>3584</spage><epage>3590</epage><pages>3584-3590</pages><issn>0223-5234</issn><eissn>1768-3254</eissn><coden>EJMCA5</coden><abstract>Monoamine Oxidase B interaction with known ligands was investigated using combined pharmacophore and structure based modeling approach. The docking results suggested that the pharmacophore and docking models are in good agreement and are used to identify the selective MAO-B inhibitors. The best model, Hypo2 consists of three pharmacophore features, i.e., one hydrogen bond acceptor, one hydrogen bond donor and one ring aromatic. The Hypo2 model was used to screen an in-house database of 80,000 molecules and have resulted in 5500 compounds. Docking studies were performed, subsequently, on the cluster representatives of 530 hits from 5500 compounds. Based on the structural novelty and selectivity index, we have suggested 15 selective MAO-B inhibitors for further synthesis and pharmacological screening. [Display omitted] Hypo2 quantitative pharmacophore model of selective MAO B inhibitor which shows good prediction of training and test set compounds was compared to other nine hypotheses.</abstract><cop>Kidlington</cop><pub>Elsevier Masson SAS</pub><pmid>19321235</pmid><doi>10.1016/j.ejmech.2009.02.031</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0223-5234
ispartof European journal of medicinal chemistry, 2009-09, Vol.44 (9), p.3584-3590
issn 0223-5234
1768-3254
language eng
recordid cdi_proquest_miscellaneous_67498277
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biological and medical sciences
Catalyst
Catalytic Domain
Docking
Drug Design
Glide
Humans
MAO-B
Medical sciences
Miscellaneous
Models, Molecular
Molecular Structure
Monoamine Oxidase - chemistry
Monoamine Oxidase - metabolism
Monoamine Oxidase Inhibitors - chemistry
Monoamine Oxidase Inhibitors - metabolism
Neuropharmacology
Pharmacology. Drug treatments
Pharmacophore
Protein Binding
Structure-Activity Relationship
title Knowledge based identification of MAO-B selective inhibitors using pharmacophore and structure based virtual screening models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20based%20identification%20of%20MAO-B%20selective%20inhibitors%20using%20pharmacophore%20and%20structure%20based%20virtual%20screening%20models&rft.jtitle=European%20journal%20of%20medicinal%20chemistry&rft.au=Boppana,%20Kiran&rft.date=2009-09-01&rft.volume=44&rft.issue=9&rft.spage=3584&rft.epage=3590&rft.pages=3584-3590&rft.issn=0223-5234&rft.eissn=1768-3254&rft.coden=EJMCA5&rft_id=info:doi/10.1016/j.ejmech.2009.02.031&rft_dat=%3Cproquest_cross%3E67498277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67498277&rft_id=info:pmid/19321235&rft_els_id=S0223523409001184&rfr_iscdi=true