Reversible activation of secretory phospholipase A2 by sulfhydryl reagents

Secretory phospholipase A(2)s (sPLA(2)s) have been implicated in physiological and pathological events, but the regulatory mechanism(s) of their activities in cells remains to be solved. Previously, we reported that phenylarsine oxide (PAO), a sulfhydryl reagent, stimulated arachidonic acid (AA) rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of biochemistry and biophysics 2005-04, Vol.436 (1), p.145-153
Hauptverfasser: Nabemoto, Maiko, Ohsawa, Keiko, Nakamura, Hiroyuki, Hirabayashi, Tetsuya, Saito, Takeshi, Okuma, Yasunobu, Nomura, Yasuyuki, Murayama, Toshihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Secretory phospholipase A(2)s (sPLA(2)s) have been implicated in physiological and pathological events, but the regulatory mechanism(s) of their activities in cells remains to be solved. Previously, we reported that phenylarsine oxide (PAO), a sulfhydryl reagent, stimulated arachidonic acid (AA) release in rat pheochromocytoma PC12 cells. In this study, we examined the effects of thimerosal, another sulfhydryl reagent, to clarify the sulfhydryl modification and activation of sPLA(2) molecules in cells. Like PAO, thimerosal-stimulated AA release in an irreversible manner and the responses were not additive. Dithiol compounds such as dithiothreitol inhibited AA release from both the thimerosal- and the PAO-treated cells, and monothiol compounds (l-Cys and glutathione) decreased the thimerosal response. Both sulfhydryl reagents stimulated AA release from the HEK293T cells expressing human sPLA(2)X, and stimulated the sPLA(2) activities of bee venom sPLA(2) and the soluble fraction of sPLA(2)X-expressing cells. Our results suggest that the sPLA(2)s in cells are inactive and modification of disulfide bonds in the molecules can be a trigger of sPLA(2) activation in cells. Sulfhydryl reagents are useful tools for studying the regulatory mechanism(s) of sPLA(2) activity in cells.
ISSN:0003-9861
DOI:10.1016/j.abb.2005.02.003