Investigating Cellular Signaling Reactions in Single Attoliter Vesicles

Understanding cellular signaling mediated by cell surface receptors is key to modern biomedical research and drug development. The discovery of a growing number of potential molecular targets and therapeutic compounds requires downscaling and accelerated functional screening. Receptor-mediated cellu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2005-03, Vol.127 (9), p.2908-2912
Hauptverfasser: Pick, Horst, Schmid, Evelyne L, Tairi, Ana-Paula, Ilegems, Erwin, Hovius, Ruud, Vogel, Horst
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding cellular signaling mediated by cell surface receptors is key to modern biomedical research and drug development. The discovery of a growing number of potential molecular targets and therapeutic compounds requires downscaling and accelerated functional screening. Receptor-mediated cellular responses are typically investigated on single cells or cell populations. Here, we show how to monitor cellular signaling reactions at a yet unreached miniaturization level. On the basis of our observations, cytochalasin induces mammalian cells to extrude from their plasma membrane submicrometer-sized native vesicles. They comprise functional cell surface receptors correctly exposing their extracellular ligand binding sites on the outer vesicle surface and retaining cytosolic proteins in the vesicle interior. As a prototypical example, ligand binding to the ionotropic 5-HT3 receptor and subsequent transmembrane Ca2+ signaling were monitored in single attoliter vesicles. Thus, native vesicles are the smallest autonomous containers capable of performing cellular signaling reactions under physiological conditions. Because a single cell delivers about 50 native vesicles, which can be isolated and addressed as individuals, our concept allows multiple functional analyses of individual cells having a limited availability and opens new vistas for miniaturized bioanalytics.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja044605x