Coarse-grained kinetic computations for rare events: application to micelle formation

We discuss a coarse-grained approach to the computation of rare events in the context of grand canonical Monte Carlo (GCMC) simulations of self-assembly of surfactant molecules into micelles. The basic assumption is that the computational system dynamics can be decomposed into two parts-fast (noise)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2005-01, Vol.122 (4), p.44908-44908
Hauptverfasser: Kopelevich, Dmitry I, Panagiotopoulos, Athanassios Z, Kevrekidis, Ioannis G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44908
container_issue 4
container_start_page 44908
container_title The Journal of chemical physics
container_volume 122
creator Kopelevich, Dmitry I
Panagiotopoulos, Athanassios Z
Kevrekidis, Ioannis G
description We discuss a coarse-grained approach to the computation of rare events in the context of grand canonical Monte Carlo (GCMC) simulations of self-assembly of surfactant molecules into micelles. The basic assumption is that the computational system dynamics can be decomposed into two parts-fast (noise) and slow (reaction coordinates) dynamics, so that the system can be described by an effective, coarse-grained Fokker-Planck (FP) equation. While such an assumption may be valid in many circumstances, an explicit form of FP equation is not always available. In our computations we bypass the analytic derivation of such an effective FP equation. The effective free energy gradient and the state-dependent magnitude of the random noise, which are necessary to formulate the effective Fokker-Planck equation, are obtained from ensembles of short bursts of microscopic simulations with judiciously chosen initial conditions. The reaction coordinate in our micelle formation problem is taken to be the size of a cluster of surfactant molecules. We test the validity of the effective FP description in this system and reconstruct a coarse-grained free energy surface in good agreement with full-scale GCMC simulations. We also show that, for very small clusters, the cluster size ceases to be a good reaction coordinate for a one-dimensional effective description. We discuss possible ways to improve the current model and to take higher-dimensional coarse-grained dynamics into account.
doi_str_mv 10.1063/1.1839174
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67476501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67476501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-fe0372c5a283360383993dfd021ac79229e886d62e445308d192214383c8f2f83</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMo7rp68A9IToKHrpOkzYc3WfyCBS_uucR0KtW2qUkr-O_NfoCXGeadh-Gdl5BLBksGUtyyJdPCMJUfkTkDbTIlDRyTOQBnmZEgZ-Qsxk8AYIrnp2TGCpUDN2ZONitvQ8TsI9imx4p-pTo2jjrfDdNox8b3kdY-0GADUvzBfox31A5D27jdlo6edo3DtsUt1-3Ec3JS2zbixaEvyObx4W31nK1fn15W9-vMcS3GrEYQirvCpklIEOkJI6q6SratU4Zzg1rLSnLM80KArljSWJ44p2tea7Eg1_u7Q_DfE8ax7Jq49WJ79FMspcqVLIAl8GYPuuBjDFiXQ2g6G35LBuU2w5KVhwwTe3U4Or13WP2Th9DEH6Boat0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67476501</pqid></control><display><type>article</type><title>Coarse-grained kinetic computations for rare events: application to micelle formation</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Kopelevich, Dmitry I ; Panagiotopoulos, Athanassios Z ; Kevrekidis, Ioannis G</creator><creatorcontrib>Kopelevich, Dmitry I ; Panagiotopoulos, Athanassios Z ; Kevrekidis, Ioannis G</creatorcontrib><description>We discuss a coarse-grained approach to the computation of rare events in the context of grand canonical Monte Carlo (GCMC) simulations of self-assembly of surfactant molecules into micelles. The basic assumption is that the computational system dynamics can be decomposed into two parts-fast (noise) and slow (reaction coordinates) dynamics, so that the system can be described by an effective, coarse-grained Fokker-Planck (FP) equation. While such an assumption may be valid in many circumstances, an explicit form of FP equation is not always available. In our computations we bypass the analytic derivation of such an effective FP equation. The effective free energy gradient and the state-dependent magnitude of the random noise, which are necessary to formulate the effective Fokker-Planck equation, are obtained from ensembles of short bursts of microscopic simulations with judiciously chosen initial conditions. The reaction coordinate in our micelle formation problem is taken to be the size of a cluster of surfactant molecules. We test the validity of the effective FP description in this system and reconstruct a coarse-grained free energy surface in good agreement with full-scale GCMC simulations. We also show that, for very small clusters, the cluster size ceases to be a good reaction coordinate for a one-dimensional effective description. We discuss possible ways to improve the current model and to take higher-dimensional coarse-grained dynamics into account.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1839174</identifier><identifier>PMID: 15740299</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of chemical physics, 2005-01, Vol.122 (4), p.44908-44908</ispartof><rights>(c) 2005 American Institute of Physics.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-fe0372c5a283360383993dfd021ac79229e886d62e445308d192214383c8f2f83</citedby><cites>FETCH-LOGICAL-c283t-fe0372c5a283360383993dfd021ac79229e886d62e445308d192214383c8f2f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15740299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kopelevich, Dmitry I</creatorcontrib><creatorcontrib>Panagiotopoulos, Athanassios Z</creatorcontrib><creatorcontrib>Kevrekidis, Ioannis G</creatorcontrib><title>Coarse-grained kinetic computations for rare events: application to micelle formation</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We discuss a coarse-grained approach to the computation of rare events in the context of grand canonical Monte Carlo (GCMC) simulations of self-assembly of surfactant molecules into micelles. The basic assumption is that the computational system dynamics can be decomposed into two parts-fast (noise) and slow (reaction coordinates) dynamics, so that the system can be described by an effective, coarse-grained Fokker-Planck (FP) equation. While such an assumption may be valid in many circumstances, an explicit form of FP equation is not always available. In our computations we bypass the analytic derivation of such an effective FP equation. The effective free energy gradient and the state-dependent magnitude of the random noise, which are necessary to formulate the effective Fokker-Planck equation, are obtained from ensembles of short bursts of microscopic simulations with judiciously chosen initial conditions. The reaction coordinate in our micelle formation problem is taken to be the size of a cluster of surfactant molecules. We test the validity of the effective FP description in this system and reconstruct a coarse-grained free energy surface in good agreement with full-scale GCMC simulations. We also show that, for very small clusters, the cluster size ceases to be a good reaction coordinate for a one-dimensional effective description. We discuss possible ways to improve the current model and to take higher-dimensional coarse-grained dynamics into account.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LxDAQhoMo7rp68A9IToKHrpOkzYc3WfyCBS_uucR0KtW2qUkr-O_NfoCXGeadh-Gdl5BLBksGUtyyJdPCMJUfkTkDbTIlDRyTOQBnmZEgZ-Qsxk8AYIrnp2TGCpUDN2ZONitvQ8TsI9imx4p-pTo2jjrfDdNox8b3kdY-0GADUvzBfox31A5D27jdlo6edo3DtsUt1-3Ec3JS2zbixaEvyObx4W31nK1fn15W9-vMcS3GrEYQirvCpklIEOkJI6q6SratU4Zzg1rLSnLM80KArljSWJ44p2tea7Eg1_u7Q_DfE8ax7Jq49WJ79FMspcqVLIAl8GYPuuBjDFiXQ2g6G35LBuU2w5KVhwwTe3U4Or13WP2Th9DEH6Boat0</recordid><startdate>20050122</startdate><enddate>20050122</enddate><creator>Kopelevich, Dmitry I</creator><creator>Panagiotopoulos, Athanassios Z</creator><creator>Kevrekidis, Ioannis G</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050122</creationdate><title>Coarse-grained kinetic computations for rare events: application to micelle formation</title><author>Kopelevich, Dmitry I ; Panagiotopoulos, Athanassios Z ; Kevrekidis, Ioannis G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-fe0372c5a283360383993dfd021ac79229e886d62e445308d192214383c8f2f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopelevich, Dmitry I</creatorcontrib><creatorcontrib>Panagiotopoulos, Athanassios Z</creatorcontrib><creatorcontrib>Kevrekidis, Ioannis G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopelevich, Dmitry I</au><au>Panagiotopoulos, Athanassios Z</au><au>Kevrekidis, Ioannis G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarse-grained kinetic computations for rare events: application to micelle formation</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2005-01-22</date><risdate>2005</risdate><volume>122</volume><issue>4</issue><spage>44908</spage><epage>44908</epage><pages>44908-44908</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We discuss a coarse-grained approach to the computation of rare events in the context of grand canonical Monte Carlo (GCMC) simulations of self-assembly of surfactant molecules into micelles. The basic assumption is that the computational system dynamics can be decomposed into two parts-fast (noise) and slow (reaction coordinates) dynamics, so that the system can be described by an effective, coarse-grained Fokker-Planck (FP) equation. While such an assumption may be valid in many circumstances, an explicit form of FP equation is not always available. In our computations we bypass the analytic derivation of such an effective FP equation. The effective free energy gradient and the state-dependent magnitude of the random noise, which are necessary to formulate the effective Fokker-Planck equation, are obtained from ensembles of short bursts of microscopic simulations with judiciously chosen initial conditions. The reaction coordinate in our micelle formation problem is taken to be the size of a cluster of surfactant molecules. We test the validity of the effective FP description in this system and reconstruct a coarse-grained free energy surface in good agreement with full-scale GCMC simulations. We also show that, for very small clusters, the cluster size ceases to be a good reaction coordinate for a one-dimensional effective description. We discuss possible ways to improve the current model and to take higher-dimensional coarse-grained dynamics into account.</abstract><cop>United States</cop><pmid>15740299</pmid><doi>10.1063/1.1839174</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2005-01, Vol.122 (4), p.44908-44908
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_67476501
source AIP Journals Complete; AIP Digital Archive
title Coarse-grained kinetic computations for rare events: application to micelle formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarse-grained%20kinetic%20computations%20for%20rare%20events:%20application%20to%20micelle%20formation&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kopelevich,%20Dmitry%20I&rft.date=2005-01-22&rft.volume=122&rft.issue=4&rft.spage=44908&rft.epage=44908&rft.pages=44908-44908&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1839174&rft_dat=%3Cproquest_cross%3E67476501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67476501&rft_id=info:pmid/15740299&rfr_iscdi=true