Genome wide analysis of transcript levels after perturbation of the EGFR pathway in the Drosophila ovary
Defects in the epidermal growth factor receptor (EGFR) pathway can lead to aggressive tumor formation. Activation of this pathway during normal development produces multiple outcomes at the cellular level, leading to cellular differentiation and cell cycle activation. To elucidate the downstream eve...
Gespeichert in:
Veröffentlicht in: | Developmental dynamics 2005-03, Vol.232 (3), p.709-724 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 724 |
---|---|
container_issue | 3 |
container_start_page | 709 |
container_title | Developmental dynamics |
container_volume | 232 |
creator | Jordan, Katherine C. Hatfield, Steven D. Tworoger, Michael Ward, Ellen J. Fischer, Karin A. Bowers, Stuart Ruohola‐Baker, Hannele |
description | Defects in the epidermal growth factor receptor (EGFR) pathway can lead to aggressive tumor formation. Activation of this pathway during normal development produces multiple outcomes at the cellular level, leading to cellular differentiation and cell cycle activation. To elucidate the downstream events induced by this pathway, we used genome‐wide cDNA microarray technology to identify potential EGFR targets in Drosophila oogenesis. We focused on genes for which the transcriptional responses due to EGFR pathway activation and inactivation were in opposite directions, as this is expected for genes that are directly regulated by the pathway in this tissue type. We perturbed the EGFR pathway in epithelial follicle cells using seven different genetic backgrounds. To activate the pathway, we overexpressed an activated form of the EGFR (UAS‐caEGFR), and an activated form of the signal transducer Raf (UAS‐caRaf); we also over‐ or ectopically expressed the downstream homeobox transcription factor Mirror (UAS‐mirr) and the ligand‐activating serine protease Rhomboid (UAS‐rho). To reduce pathway activity we used loss‐of‐function mutations in the ligand (gurken) and receptor (torpedo). From microarrays containing 6,255 genes, we found 454 genes that responded in an opposite manner in gain‐of‐function and loss‐of‐function conditions among which are many Wingless signaling pathway components. Further analysis of two such components, sugarless and pangolin, revealed a function for these genes in late follicle cell patterning. Of interest, components of other signaling pathways were also enriched in the EGFR target group, suggesting that one reason for the pleiotropic effects seen with EGFR activity in cancer progression and development may be its ability to regulate many other signaling pathways. Developmental Dynamics 232:709–724, 2005. © 2005 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/dvdy.20318 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67475556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67475556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3948-b425faee0c001c52b7fd24b7408957caba1037b3ef4e0d2966a2be06c2f9f38d3</originalsourceid><addsrcrecordid>eNqFkctKxDAUhoMozji68QEkKxdCx5P0knQpc1MQBFHBVUnbExrpzaQzQ9_ezgXc6eocDh8f_Ocn5JrBlAHw-3yT91MOPpMnZMwgFh4wIU53eyg96Us5IhfOfQGAjAJ2TkYsFBAwwcakWGHdVEi3JkeqalX2zjjaaNpZVbvMmrajJW6wdFTpDi1t0XZrm6rONPWeK5AuVstX2qqu2Kqemnp_m9vGNW1hSkWbjbL9JTnTqnR4dZwT8r5cvM0eveeX1dPs4dnL_DiQXhrwUCtEyABYFvJU6JwHqQhAxqHIVKoY-CL1UQcIOY-jSPEUIcq4jrUvc39Cbg_e1jbfa3RdUhmXYVmqGpu1SyIRiDAMo39BJjiPmeQDeHcAsyGSs6iT1ppqiJQwSHYFJLsCkn0BA3xztK7TCvNf9PjxAWAHYGtK7P9QJfOP-edB-gPuPpHO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17229182</pqid></control><display><type>article</type><title>Genome wide analysis of transcript levels after perturbation of the EGFR pathway in the Drosophila ovary</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Jordan, Katherine C. ; Hatfield, Steven D. ; Tworoger, Michael ; Ward, Ellen J. ; Fischer, Karin A. ; Bowers, Stuart ; Ruohola‐Baker, Hannele</creator><creatorcontrib>Jordan, Katherine C. ; Hatfield, Steven D. ; Tworoger, Michael ; Ward, Ellen J. ; Fischer, Karin A. ; Bowers, Stuart ; Ruohola‐Baker, Hannele</creatorcontrib><description>Defects in the epidermal growth factor receptor (EGFR) pathway can lead to aggressive tumor formation. Activation of this pathway during normal development produces multiple outcomes at the cellular level, leading to cellular differentiation and cell cycle activation. To elucidate the downstream events induced by this pathway, we used genome‐wide cDNA microarray technology to identify potential EGFR targets in Drosophila oogenesis. We focused on genes for which the transcriptional responses due to EGFR pathway activation and inactivation were in opposite directions, as this is expected for genes that are directly regulated by the pathway in this tissue type. We perturbed the EGFR pathway in epithelial follicle cells using seven different genetic backgrounds. To activate the pathway, we overexpressed an activated form of the EGFR (UAS‐caEGFR), and an activated form of the signal transducer Raf (UAS‐caRaf); we also over‐ or ectopically expressed the downstream homeobox transcription factor Mirror (UAS‐mirr) and the ligand‐activating serine protease Rhomboid (UAS‐rho). To reduce pathway activity we used loss‐of‐function mutations in the ligand (gurken) and receptor (torpedo). From microarrays containing 6,255 genes, we found 454 genes that responded in an opposite manner in gain‐of‐function and loss‐of‐function conditions among which are many Wingless signaling pathway components. Further analysis of two such components, sugarless and pangolin, revealed a function for these genes in late follicle cell patterning. Of interest, components of other signaling pathways were also enriched in the EGFR target group, suggesting that one reason for the pleiotropic effects seen with EGFR activity in cancer progression and development may be its ability to regulate many other signaling pathways. Developmental Dynamics 232:709–724, 2005. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 1058-8388</identifier><identifier>EISSN: 1097-0177</identifier><identifier>DOI: 10.1002/dvdy.20318</identifier><identifier>PMID: 15704171</identifier><language>eng</language><publisher>New York: Wiley‐Liss, Inc</publisher><subject>Animals ; Drosophila ; Drosophila - genetics ; Drosophila - growth & development ; Drosophila - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Ecdysone ; EGFr ; ErbB Receptors - metabolism ; Eye Proteins - genetics ; Eye Proteins - metabolism ; Female ; Gene Expression Profiling ; Genome ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Immunohistochemistry ; In Situ Hybridization ; JNK ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; microarray ; Models, Biological ; Mutation ; Notch ; Oligonucleotide Array Sequence Analysis ; Oogenesis ; ovary ; Ovary - cytology ; Ovary - metabolism ; Proto-Oncogene Proteins - metabolism ; raf Kinases - metabolism ; Repressor Proteins - metabolism ; Signal Transduction ; TGF‐β ; Torpedo ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transforming Growth Factor alpha - genetics ; Transforming Growth Factor alpha - metabolism ; Wingless ; Wnt1 Protein</subject><ispartof>Developmental dynamics, 2005-03, Vol.232 (3), p.709-724</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><rights>Copyright (c) 2005 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3948-b425faee0c001c52b7fd24b7408957caba1037b3ef4e0d2966a2be06c2f9f38d3</citedby><cites>FETCH-LOGICAL-c3948-b425faee0c001c52b7fd24b7408957caba1037b3ef4e0d2966a2be06c2f9f38d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fdvdy.20318$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fdvdy.20318$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15704171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jordan, Katherine C.</creatorcontrib><creatorcontrib>Hatfield, Steven D.</creatorcontrib><creatorcontrib>Tworoger, Michael</creatorcontrib><creatorcontrib>Ward, Ellen J.</creatorcontrib><creatorcontrib>Fischer, Karin A.</creatorcontrib><creatorcontrib>Bowers, Stuart</creatorcontrib><creatorcontrib>Ruohola‐Baker, Hannele</creatorcontrib><title>Genome wide analysis of transcript levels after perturbation of the EGFR pathway in the Drosophila ovary</title><title>Developmental dynamics</title><addtitle>Dev Dyn</addtitle><description>Defects in the epidermal growth factor receptor (EGFR) pathway can lead to aggressive tumor formation. Activation of this pathway during normal development produces multiple outcomes at the cellular level, leading to cellular differentiation and cell cycle activation. To elucidate the downstream events induced by this pathway, we used genome‐wide cDNA microarray technology to identify potential EGFR targets in Drosophila oogenesis. We focused on genes for which the transcriptional responses due to EGFR pathway activation and inactivation were in opposite directions, as this is expected for genes that are directly regulated by the pathway in this tissue type. We perturbed the EGFR pathway in epithelial follicle cells using seven different genetic backgrounds. To activate the pathway, we overexpressed an activated form of the EGFR (UAS‐caEGFR), and an activated form of the signal transducer Raf (UAS‐caRaf); we also over‐ or ectopically expressed the downstream homeobox transcription factor Mirror (UAS‐mirr) and the ligand‐activating serine protease Rhomboid (UAS‐rho). To reduce pathway activity we used loss‐of‐function mutations in the ligand (gurken) and receptor (torpedo). From microarrays containing 6,255 genes, we found 454 genes that responded in an opposite manner in gain‐of‐function and loss‐of‐function conditions among which are many Wingless signaling pathway components. Further analysis of two such components, sugarless and pangolin, revealed a function for these genes in late follicle cell patterning. Of interest, components of other signaling pathways were also enriched in the EGFR target group, suggesting that one reason for the pleiotropic effects seen with EGFR activity in cancer progression and development may be its ability to regulate many other signaling pathways. Developmental Dynamics 232:709–724, 2005. © 2005 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Drosophila</subject><subject>Drosophila - genetics</subject><subject>Drosophila - growth & development</subject><subject>Drosophila - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Ecdysone</subject><subject>EGFr</subject><subject>ErbB Receptors - metabolism</subject><subject>Eye Proteins - genetics</subject><subject>Eye Proteins - metabolism</subject><subject>Female</subject><subject>Gene Expression Profiling</subject><subject>Genome</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Immunohistochemistry</subject><subject>In Situ Hybridization</subject><subject>JNK</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>microarray</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>Notch</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Oogenesis</subject><subject>ovary</subject><subject>Ovary - cytology</subject><subject>Ovary - metabolism</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>raf Kinases - metabolism</subject><subject>Repressor Proteins - metabolism</subject><subject>Signal Transduction</subject><subject>TGF‐β</subject><subject>Torpedo</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transforming Growth Factor alpha - genetics</subject><subject>Transforming Growth Factor alpha - metabolism</subject><subject>Wingless</subject><subject>Wnt1 Protein</subject><issn>1058-8388</issn><issn>1097-0177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctKxDAUhoMozji68QEkKxdCx5P0knQpc1MQBFHBVUnbExrpzaQzQ9_ezgXc6eocDh8f_Ocn5JrBlAHw-3yT91MOPpMnZMwgFh4wIU53eyg96Us5IhfOfQGAjAJ2TkYsFBAwwcakWGHdVEi3JkeqalX2zjjaaNpZVbvMmrajJW6wdFTpDi1t0XZrm6rONPWeK5AuVstX2qqu2Kqemnp_m9vGNW1hSkWbjbL9JTnTqnR4dZwT8r5cvM0eveeX1dPs4dnL_DiQXhrwUCtEyABYFvJU6JwHqQhAxqHIVKoY-CL1UQcIOY-jSPEUIcq4jrUvc39Cbg_e1jbfa3RdUhmXYVmqGpu1SyIRiDAMo39BJjiPmeQDeHcAsyGSs6iT1ppqiJQwSHYFJLsCkn0BA3xztK7TCvNf9PjxAWAHYGtK7P9QJfOP-edB-gPuPpHO</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Jordan, Katherine C.</creator><creator>Hatfield, Steven D.</creator><creator>Tworoger, Michael</creator><creator>Ward, Ellen J.</creator><creator>Fischer, Karin A.</creator><creator>Bowers, Stuart</creator><creator>Ruohola‐Baker, Hannele</creator><general>Wiley‐Liss, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200503</creationdate><title>Genome wide analysis of transcript levels after perturbation of the EGFR pathway in the Drosophila ovary</title><author>Jordan, Katherine C. ; Hatfield, Steven D. ; Tworoger, Michael ; Ward, Ellen J. ; Fischer, Karin A. ; Bowers, Stuart ; Ruohola‐Baker, Hannele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3948-b425faee0c001c52b7fd24b7408957caba1037b3ef4e0d2966a2be06c2f9f38d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Drosophila</topic><topic>Drosophila - genetics</topic><topic>Drosophila - growth & development</topic><topic>Drosophila - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Ecdysone</topic><topic>EGFr</topic><topic>ErbB Receptors - metabolism</topic><topic>Eye Proteins - genetics</topic><topic>Eye Proteins - metabolism</topic><topic>Female</topic><topic>Gene Expression Profiling</topic><topic>Genome</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Immunohistochemistry</topic><topic>In Situ Hybridization</topic><topic>JNK</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>microarray</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>Notch</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Oogenesis</topic><topic>ovary</topic><topic>Ovary - cytology</topic><topic>Ovary - metabolism</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>raf Kinases - metabolism</topic><topic>Repressor Proteins - metabolism</topic><topic>Signal Transduction</topic><topic>TGF‐β</topic><topic>Torpedo</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transforming Growth Factor alpha - genetics</topic><topic>Transforming Growth Factor alpha - metabolism</topic><topic>Wingless</topic><topic>Wnt1 Protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jordan, Katherine C.</creatorcontrib><creatorcontrib>Hatfield, Steven D.</creatorcontrib><creatorcontrib>Tworoger, Michael</creatorcontrib><creatorcontrib>Ward, Ellen J.</creatorcontrib><creatorcontrib>Fischer, Karin A.</creatorcontrib><creatorcontrib>Bowers, Stuart</creatorcontrib><creatorcontrib>Ruohola‐Baker, Hannele</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jordan, Katherine C.</au><au>Hatfield, Steven D.</au><au>Tworoger, Michael</au><au>Ward, Ellen J.</au><au>Fischer, Karin A.</au><au>Bowers, Stuart</au><au>Ruohola‐Baker, Hannele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome wide analysis of transcript levels after perturbation of the EGFR pathway in the Drosophila ovary</atitle><jtitle>Developmental dynamics</jtitle><addtitle>Dev Dyn</addtitle><date>2005-03</date><risdate>2005</risdate><volume>232</volume><issue>3</issue><spage>709</spage><epage>724</epage><pages>709-724</pages><issn>1058-8388</issn><eissn>1097-0177</eissn><abstract>Defects in the epidermal growth factor receptor (EGFR) pathway can lead to aggressive tumor formation. Activation of this pathway during normal development produces multiple outcomes at the cellular level, leading to cellular differentiation and cell cycle activation. To elucidate the downstream events induced by this pathway, we used genome‐wide cDNA microarray technology to identify potential EGFR targets in Drosophila oogenesis. We focused on genes for which the transcriptional responses due to EGFR pathway activation and inactivation were in opposite directions, as this is expected for genes that are directly regulated by the pathway in this tissue type. We perturbed the EGFR pathway in epithelial follicle cells using seven different genetic backgrounds. To activate the pathway, we overexpressed an activated form of the EGFR (UAS‐caEGFR), and an activated form of the signal transducer Raf (UAS‐caRaf); we also over‐ or ectopically expressed the downstream homeobox transcription factor Mirror (UAS‐mirr) and the ligand‐activating serine protease Rhomboid (UAS‐rho). To reduce pathway activity we used loss‐of‐function mutations in the ligand (gurken) and receptor (torpedo). From microarrays containing 6,255 genes, we found 454 genes that responded in an opposite manner in gain‐of‐function and loss‐of‐function conditions among which are many Wingless signaling pathway components. Further analysis of two such components, sugarless and pangolin, revealed a function for these genes in late follicle cell patterning. Of interest, components of other signaling pathways were also enriched in the EGFR target group, suggesting that one reason for the pleiotropic effects seen with EGFR activity in cancer progression and development may be its ability to regulate many other signaling pathways. Developmental Dynamics 232:709–724, 2005. © 2005 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>Wiley‐Liss, Inc</pub><pmid>15704171</pmid><doi>10.1002/dvdy.20318</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-8388 |
ispartof | Developmental dynamics, 2005-03, Vol.232 (3), p.709-724 |
issn | 1058-8388 1097-0177 |
language | eng |
recordid | cdi_proquest_miscellaneous_67475556 |
source | MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animals Drosophila Drosophila - genetics Drosophila - growth & development Drosophila - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Ecdysone EGFr ErbB Receptors - metabolism Eye Proteins - genetics Eye Proteins - metabolism Female Gene Expression Profiling Genome Homeodomain Proteins - genetics Homeodomain Proteins - metabolism Immunohistochemistry In Situ Hybridization JNK Membrane Proteins - genetics Membrane Proteins - metabolism microarray Models, Biological Mutation Notch Oligonucleotide Array Sequence Analysis Oogenesis ovary Ovary - cytology Ovary - metabolism Proto-Oncogene Proteins - metabolism raf Kinases - metabolism Repressor Proteins - metabolism Signal Transduction TGF‐β Torpedo Transcription Factors - genetics Transcription Factors - metabolism Transforming Growth Factor alpha - genetics Transforming Growth Factor alpha - metabolism Wingless Wnt1 Protein |
title | Genome wide analysis of transcript levels after perturbation of the EGFR pathway in the Drosophila ovary |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20wide%20analysis%20of%20transcript%20levels%20after%20perturbation%20of%20the%20EGFR%20pathway%20in%20the%20Drosophila%20ovary&rft.jtitle=Developmental%20dynamics&rft.au=Jordan,%20Katherine%20C.&rft.date=2005-03&rft.volume=232&rft.issue=3&rft.spage=709&rft.epage=724&rft.pages=709-724&rft.issn=1058-8388&rft.eissn=1097-0177&rft_id=info:doi/10.1002/dvdy.20318&rft_dat=%3Cproquest_cross%3E67475556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17229182&rft_id=info:pmid/15704171&rfr_iscdi=true |