Gene expression profile of papillary thyroid cancer: Sources of variability and diagnostic implications
The study looked for an optimal set of genes differentiating between papillary thyroid cancer (PTC) and normal thyroid tissue and assessed the sources of variability in gene expression profiles. The analysis was done by oligonucleotide microarrays (GeneChip HG-U133A) in 50 tissue samples taken intra...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2005-02, Vol.65 (4), p.1587-1597 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1597 |
---|---|
container_issue | 4 |
container_start_page | 1587 |
container_title | Cancer research (Chicago, Ill.) |
container_volume | 65 |
creator | JARZAB, Barbara WIENCH, Malgorzata PAWLACZEK, Agnieszka SZPAK, Sylwia GUBAŁA, Elzbieta SWIERNIAK, Andrzej FUJAREWICZ, Krzysztof SIMEK, Krzysztof JARZAB, Michal OCZKO-WOJCIECHOWSKA, Malgorzata WŁOCH, Jan CZARNIECKA, Agnieszka CHMIELIK, Ewa LANGE, Dariusz |
description | The study looked for an optimal set of genes differentiating between papillary thyroid cancer (PTC) and normal thyroid tissue and assessed the sources of variability in gene expression profiles. The analysis was done by oligonucleotide microarrays (GeneChip HG-U133A) in 50 tissue samples taken intraoperatively from 33 patients (23 PTC patients and 10 patients with other thyroid disease). In the initial group of 16 PTC and 16 normal samples, we assessed the sources of variability in the gene expression profile by singular value decomposition which specified three major patterns of variability. The first and the most distinct mode grouped transcripts differentiating between tumor and normal tissues. Two consecutive modes contained a large proportion of immunity-related genes. To generate a multigene classifier for tumor-normal difference, we used support vector machines-based technique (recursive feature replacement). It included the following 19 genes: DPP4, GJB3, ST14, SERPINA1, LRP4, MET, EVA1, SPUVE, LGALS3, HBB, MKRN2, MRC2, IGSF1, KIAA0830, RXRG, P4HA2, CDH3, IL13RA1, and MTMR4, and correctly discriminated 17 of 18 additional PTC/normal thyroid samples and all 16 samples published in a previous microarray study. Selected novel genes (LRP4, EVA1, TMPRSS4, QPCT, and SLC34A2) were confirmed by Q-PCR. Our results prove that the gene expression signal of PTC is easily detectable even when cancer cells do not prevail over tumor stroma. We indicate and separate the confounding variability related to the immune response. Finally, we propose a potent molecular classifier able to discriminate between PTC and nonmalignant thyroid in more than 90% of investigated samples. |
doi_str_mv | 10.1158/0008-5472.can-04-3078 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67472248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67472248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-f4d19e6d98bd91f099b2f10f4811fb1d70745562f1115b731768d865953570363</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0EoqXwCSBvYJdiN36FXVVBQapgAawtx49ilCbBThD9exy1oktW1lhn7mjOAHCJ0RRjKm4RQiKjhM-mWtUZIlmOuDgCY0xzkXFC6DEY_zEjcBbjZyopRvQUjDDlOUWkGIP10tYW2p822Bh9U8M2NM5XFjYOtqr1VaXCFnYf29B4A9MobcMdfG36oG0coG8VvCp95bstVLWBxqt13cTOa-g3beW16lJsPAcnTlXRXuzfCXh_uH9bPGarl-XTYr7KNGG8yxwxuLDMFKI0BXaoKMqZw8gRgbErseGIE0pZ-ksSSp5jzoQRjBY0pxzlLJ-Am11u2uOrt7GTGx-1TWvUtumjZDzpmBHxL4i5yIf4BNIdqEMTY7BOtsFvkhWJkRxOIQfNctAsF_NniYgcTpH6rvYD-nJjzaFr7z4B13tARa0qF5JcHw8cowyzxP0C0HaSAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17833176</pqid></control><display><type>article</type><title>Gene expression profile of papillary thyroid cancer: Sources of variability and diagnostic implications</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>JARZAB, Barbara ; WIENCH, Malgorzata ; PAWLACZEK, Agnieszka ; SZPAK, Sylwia ; GUBAŁA, Elzbieta ; SWIERNIAK, Andrzej ; FUJAREWICZ, Krzysztof ; SIMEK, Krzysztof ; JARZAB, Michal ; OCZKO-WOJCIECHOWSKA, Malgorzata ; WŁOCH, Jan ; CZARNIECKA, Agnieszka ; CHMIELIK, Ewa ; LANGE, Dariusz</creator><creatorcontrib>JARZAB, Barbara ; WIENCH, Malgorzata ; PAWLACZEK, Agnieszka ; SZPAK, Sylwia ; GUBAŁA, Elzbieta ; SWIERNIAK, Andrzej ; FUJAREWICZ, Krzysztof ; SIMEK, Krzysztof ; JARZAB, Michal ; OCZKO-WOJCIECHOWSKA, Malgorzata ; WŁOCH, Jan ; CZARNIECKA, Agnieszka ; CHMIELIK, Ewa ; LANGE, Dariusz</creatorcontrib><description>The study looked for an optimal set of genes differentiating between papillary thyroid cancer (PTC) and normal thyroid tissue and assessed the sources of variability in gene expression profiles. The analysis was done by oligonucleotide microarrays (GeneChip HG-U133A) in 50 tissue samples taken intraoperatively from 33 patients (23 PTC patients and 10 patients with other thyroid disease). In the initial group of 16 PTC and 16 normal samples, we assessed the sources of variability in the gene expression profile by singular value decomposition which specified three major patterns of variability. The first and the most distinct mode grouped transcripts differentiating between tumor and normal tissues. Two consecutive modes contained a large proportion of immunity-related genes. To generate a multigene classifier for tumor-normal difference, we used support vector machines-based technique (recursive feature replacement). It included the following 19 genes: DPP4, GJB3, ST14, SERPINA1, LRP4, MET, EVA1, SPUVE, LGALS3, HBB, MKRN2, MRC2, IGSF1, KIAA0830, RXRG, P4HA2, CDH3, IL13RA1, and MTMR4, and correctly discriminated 17 of 18 additional PTC/normal thyroid samples and all 16 samples published in a previous microarray study. Selected novel genes (LRP4, EVA1, TMPRSS4, QPCT, and SLC34A2) were confirmed by Q-PCR. Our results prove that the gene expression signal of PTC is easily detectable even when cancer cells do not prevail over tumor stroma. We indicate and separate the confounding variability related to the immune response. Finally, we propose a potent molecular classifier able to discriminate between PTC and nonmalignant thyroid in more than 90% of investigated samples.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-04-3078</identifier><identifier>PMID: 15735049</identifier><identifier>CODEN: CNREA8</identifier><language>eng</language><publisher>Philadelphia, PA: American Association for Cancer Research</publisher><subject>Adolescent ; Adult ; Aged ; Antineoplastic agents ; Biological and medical sciences ; Carcinoma, Papillary - diagnosis ; Carcinoma, Papillary - genetics ; Carcinoma, Papillary - metabolism ; Child ; Child, Preschool ; Endocrinopathies ; Female ; Gene Expression Profiling ; Humans ; Male ; Medical sciences ; Middle Aged ; Non tumoral diseases. Target tissue resistance. Benign neoplasms ; Oligonucleotide Array Sequence Analysis ; Pharmacology. Drug treatments ; Reproducibility of Results ; Thyroid Neoplasms - diagnosis ; Thyroid Neoplasms - genetics ; Thyroid Neoplasms - metabolism ; Thyroid. Thyroid axis (diseases)</subject><ispartof>Cancer research (Chicago, Ill.), 2005-02, Vol.65 (4), p.1587-1597</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-f4d19e6d98bd91f099b2f10f4811fb1d70745562f1115b731768d865953570363</citedby><cites>FETCH-LOGICAL-c467t-f4d19e6d98bd91f099b2f10f4811fb1d70745562f1115b731768d865953570363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3343,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16561649$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15735049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>JARZAB, Barbara</creatorcontrib><creatorcontrib>WIENCH, Malgorzata</creatorcontrib><creatorcontrib>PAWLACZEK, Agnieszka</creatorcontrib><creatorcontrib>SZPAK, Sylwia</creatorcontrib><creatorcontrib>GUBAŁA, Elzbieta</creatorcontrib><creatorcontrib>SWIERNIAK, Andrzej</creatorcontrib><creatorcontrib>FUJAREWICZ, Krzysztof</creatorcontrib><creatorcontrib>SIMEK, Krzysztof</creatorcontrib><creatorcontrib>JARZAB, Michal</creatorcontrib><creatorcontrib>OCZKO-WOJCIECHOWSKA, Malgorzata</creatorcontrib><creatorcontrib>WŁOCH, Jan</creatorcontrib><creatorcontrib>CZARNIECKA, Agnieszka</creatorcontrib><creatorcontrib>CHMIELIK, Ewa</creatorcontrib><creatorcontrib>LANGE, Dariusz</creatorcontrib><title>Gene expression profile of papillary thyroid cancer: Sources of variability and diagnostic implications</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>The study looked for an optimal set of genes differentiating between papillary thyroid cancer (PTC) and normal thyroid tissue and assessed the sources of variability in gene expression profiles. The analysis was done by oligonucleotide microarrays (GeneChip HG-U133A) in 50 tissue samples taken intraoperatively from 33 patients (23 PTC patients and 10 patients with other thyroid disease). In the initial group of 16 PTC and 16 normal samples, we assessed the sources of variability in the gene expression profile by singular value decomposition which specified three major patterns of variability. The first and the most distinct mode grouped transcripts differentiating between tumor and normal tissues. Two consecutive modes contained a large proportion of immunity-related genes. To generate a multigene classifier for tumor-normal difference, we used support vector machines-based technique (recursive feature replacement). It included the following 19 genes: DPP4, GJB3, ST14, SERPINA1, LRP4, MET, EVA1, SPUVE, LGALS3, HBB, MKRN2, MRC2, IGSF1, KIAA0830, RXRG, P4HA2, CDH3, IL13RA1, and MTMR4, and correctly discriminated 17 of 18 additional PTC/normal thyroid samples and all 16 samples published in a previous microarray study. Selected novel genes (LRP4, EVA1, TMPRSS4, QPCT, and SLC34A2) were confirmed by Q-PCR. Our results prove that the gene expression signal of PTC is easily detectable even when cancer cells do not prevail over tumor stroma. We indicate and separate the confounding variability related to the immune response. Finally, we propose a potent molecular classifier able to discriminate between PTC and nonmalignant thyroid in more than 90% of investigated samples.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Antineoplastic agents</subject><subject>Biological and medical sciences</subject><subject>Carcinoma, Papillary - diagnosis</subject><subject>Carcinoma, Papillary - genetics</subject><subject>Carcinoma, Papillary - metabolism</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Endocrinopathies</subject><subject>Female</subject><subject>Gene Expression Profiling</subject><subject>Humans</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Non tumoral diseases. Target tissue resistance. Benign neoplasms</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Pharmacology. Drug treatments</subject><subject>Reproducibility of Results</subject><subject>Thyroid Neoplasms - diagnosis</subject><subject>Thyroid Neoplasms - genetics</subject><subject>Thyroid Neoplasms - metabolism</subject><subject>Thyroid. Thyroid axis (diseases)</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctOwzAQRS0EoqXwCSBvYJdiN36FXVVBQapgAawtx49ilCbBThD9exy1oktW1lhn7mjOAHCJ0RRjKm4RQiKjhM-mWtUZIlmOuDgCY0xzkXFC6DEY_zEjcBbjZyopRvQUjDDlOUWkGIP10tYW2p822Bh9U8M2NM5XFjYOtqr1VaXCFnYf29B4A9MobcMdfG36oG0coG8VvCp95bstVLWBxqt13cTOa-g3beW16lJsPAcnTlXRXuzfCXh_uH9bPGarl-XTYr7KNGG8yxwxuLDMFKI0BXaoKMqZw8gRgbErseGIE0pZ-ksSSp5jzoQRjBY0pxzlLJ-Am11u2uOrt7GTGx-1TWvUtumjZDzpmBHxL4i5yIf4BNIdqEMTY7BOtsFvkhWJkRxOIQfNctAsF_NniYgcTpH6rvYD-nJjzaFr7z4B13tARa0qF5JcHw8cowyzxP0C0HaSAg</recordid><startdate>20050215</startdate><enddate>20050215</enddate><creator>JARZAB, Barbara</creator><creator>WIENCH, Malgorzata</creator><creator>PAWLACZEK, Agnieszka</creator><creator>SZPAK, Sylwia</creator><creator>GUBAŁA, Elzbieta</creator><creator>SWIERNIAK, Andrzej</creator><creator>FUJAREWICZ, Krzysztof</creator><creator>SIMEK, Krzysztof</creator><creator>JARZAB, Michal</creator><creator>OCZKO-WOJCIECHOWSKA, Malgorzata</creator><creator>WŁOCH, Jan</creator><creator>CZARNIECKA, Agnieszka</creator><creator>CHMIELIK, Ewa</creator><creator>LANGE, Dariusz</creator><general>American Association for Cancer Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20050215</creationdate><title>Gene expression profile of papillary thyroid cancer: Sources of variability and diagnostic implications</title><author>JARZAB, Barbara ; WIENCH, Malgorzata ; PAWLACZEK, Agnieszka ; SZPAK, Sylwia ; GUBAŁA, Elzbieta ; SWIERNIAK, Andrzej ; FUJAREWICZ, Krzysztof ; SIMEK, Krzysztof ; JARZAB, Michal ; OCZKO-WOJCIECHOWSKA, Malgorzata ; WŁOCH, Jan ; CZARNIECKA, Agnieszka ; CHMIELIK, Ewa ; LANGE, Dariusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-f4d19e6d98bd91f099b2f10f4811fb1d70745562f1115b731768d865953570363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Antineoplastic agents</topic><topic>Biological and medical sciences</topic><topic>Carcinoma, Papillary - diagnosis</topic><topic>Carcinoma, Papillary - genetics</topic><topic>Carcinoma, Papillary - metabolism</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Endocrinopathies</topic><topic>Female</topic><topic>Gene Expression Profiling</topic><topic>Humans</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Non tumoral diseases. Target tissue resistance. Benign neoplasms</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Pharmacology. Drug treatments</topic><topic>Reproducibility of Results</topic><topic>Thyroid Neoplasms - diagnosis</topic><topic>Thyroid Neoplasms - genetics</topic><topic>Thyroid Neoplasms - metabolism</topic><topic>Thyroid. Thyroid axis (diseases)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JARZAB, Barbara</creatorcontrib><creatorcontrib>WIENCH, Malgorzata</creatorcontrib><creatorcontrib>PAWLACZEK, Agnieszka</creatorcontrib><creatorcontrib>SZPAK, Sylwia</creatorcontrib><creatorcontrib>GUBAŁA, Elzbieta</creatorcontrib><creatorcontrib>SWIERNIAK, Andrzej</creatorcontrib><creatorcontrib>FUJAREWICZ, Krzysztof</creatorcontrib><creatorcontrib>SIMEK, Krzysztof</creatorcontrib><creatorcontrib>JARZAB, Michal</creatorcontrib><creatorcontrib>OCZKO-WOJCIECHOWSKA, Malgorzata</creatorcontrib><creatorcontrib>WŁOCH, Jan</creatorcontrib><creatorcontrib>CZARNIECKA, Agnieszka</creatorcontrib><creatorcontrib>CHMIELIK, Ewa</creatorcontrib><creatorcontrib>LANGE, Dariusz</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JARZAB, Barbara</au><au>WIENCH, Malgorzata</au><au>PAWLACZEK, Agnieszka</au><au>SZPAK, Sylwia</au><au>GUBAŁA, Elzbieta</au><au>SWIERNIAK, Andrzej</au><au>FUJAREWICZ, Krzysztof</au><au>SIMEK, Krzysztof</au><au>JARZAB, Michal</au><au>OCZKO-WOJCIECHOWSKA, Malgorzata</au><au>WŁOCH, Jan</au><au>CZARNIECKA, Agnieszka</au><au>CHMIELIK, Ewa</au><au>LANGE, Dariusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene expression profile of papillary thyroid cancer: Sources of variability and diagnostic implications</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2005-02-15</date><risdate>2005</risdate><volume>65</volume><issue>4</issue><spage>1587</spage><epage>1597</epage><pages>1587-1597</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><coden>CNREA8</coden><abstract>The study looked for an optimal set of genes differentiating between papillary thyroid cancer (PTC) and normal thyroid tissue and assessed the sources of variability in gene expression profiles. The analysis was done by oligonucleotide microarrays (GeneChip HG-U133A) in 50 tissue samples taken intraoperatively from 33 patients (23 PTC patients and 10 patients with other thyroid disease). In the initial group of 16 PTC and 16 normal samples, we assessed the sources of variability in the gene expression profile by singular value decomposition which specified three major patterns of variability. The first and the most distinct mode grouped transcripts differentiating between tumor and normal tissues. Two consecutive modes contained a large proportion of immunity-related genes. To generate a multigene classifier for tumor-normal difference, we used support vector machines-based technique (recursive feature replacement). It included the following 19 genes: DPP4, GJB3, ST14, SERPINA1, LRP4, MET, EVA1, SPUVE, LGALS3, HBB, MKRN2, MRC2, IGSF1, KIAA0830, RXRG, P4HA2, CDH3, IL13RA1, and MTMR4, and correctly discriminated 17 of 18 additional PTC/normal thyroid samples and all 16 samples published in a previous microarray study. Selected novel genes (LRP4, EVA1, TMPRSS4, QPCT, and SLC34A2) were confirmed by Q-PCR. Our results prove that the gene expression signal of PTC is easily detectable even when cancer cells do not prevail over tumor stroma. We indicate and separate the confounding variability related to the immune response. Finally, we propose a potent molecular classifier able to discriminate between PTC and nonmalignant thyroid in more than 90% of investigated samples.</abstract><cop>Philadelphia, PA</cop><pub>American Association for Cancer Research</pub><pmid>15735049</pmid><doi>10.1158/0008-5472.can-04-3078</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-5472 |
ispartof | Cancer research (Chicago, Ill.), 2005-02, Vol.65 (4), p.1587-1597 |
issn | 0008-5472 1538-7445 |
language | eng |
recordid | cdi_proquest_miscellaneous_67472248 |
source | MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals |
subjects | Adolescent Adult Aged Antineoplastic agents Biological and medical sciences Carcinoma, Papillary - diagnosis Carcinoma, Papillary - genetics Carcinoma, Papillary - metabolism Child Child, Preschool Endocrinopathies Female Gene Expression Profiling Humans Male Medical sciences Middle Aged Non tumoral diseases. Target tissue resistance. Benign neoplasms Oligonucleotide Array Sequence Analysis Pharmacology. Drug treatments Reproducibility of Results Thyroid Neoplasms - diagnosis Thyroid Neoplasms - genetics Thyroid Neoplasms - metabolism Thyroid. Thyroid axis (diseases) |
title | Gene expression profile of papillary thyroid cancer: Sources of variability and diagnostic implications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A52%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20expression%20profile%20of%20papillary%20thyroid%20cancer:%20Sources%20of%20variability%20and%20diagnostic%20implications&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=JARZAB,%20Barbara&rft.date=2005-02-15&rft.volume=65&rft.issue=4&rft.spage=1587&rft.epage=1597&rft.pages=1587-1597&rft.issn=0008-5472&rft.eissn=1538-7445&rft.coden=CNREA8&rft_id=info:doi/10.1158/0008-5472.can-04-3078&rft_dat=%3Cproquest_cross%3E67472248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17833176&rft_id=info:pmid/15735049&rfr_iscdi=true |