Gene expression profile of papillary thyroid cancer: Sources of variability and diagnostic implications

The study looked for an optimal set of genes differentiating between papillary thyroid cancer (PTC) and normal thyroid tissue and assessed the sources of variability in gene expression profiles. The analysis was done by oligonucleotide microarrays (GeneChip HG-U133A) in 50 tissue samples taken intra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2005-02, Vol.65 (4), p.1587-1597
Hauptverfasser: JARZAB, Barbara, WIENCH, Malgorzata, PAWLACZEK, Agnieszka, SZPAK, Sylwia, GUBAŁA, Elzbieta, SWIERNIAK, Andrzej, FUJAREWICZ, Krzysztof, SIMEK, Krzysztof, JARZAB, Michal, OCZKO-WOJCIECHOWSKA, Malgorzata, WŁOCH, Jan, CZARNIECKA, Agnieszka, CHMIELIK, Ewa, LANGE, Dariusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1597
container_issue 4
container_start_page 1587
container_title Cancer research (Chicago, Ill.)
container_volume 65
creator JARZAB, Barbara
WIENCH, Malgorzata
PAWLACZEK, Agnieszka
SZPAK, Sylwia
GUBAŁA, Elzbieta
SWIERNIAK, Andrzej
FUJAREWICZ, Krzysztof
SIMEK, Krzysztof
JARZAB, Michal
OCZKO-WOJCIECHOWSKA, Malgorzata
WŁOCH, Jan
CZARNIECKA, Agnieszka
CHMIELIK, Ewa
LANGE, Dariusz
description The study looked for an optimal set of genes differentiating between papillary thyroid cancer (PTC) and normal thyroid tissue and assessed the sources of variability in gene expression profiles. The analysis was done by oligonucleotide microarrays (GeneChip HG-U133A) in 50 tissue samples taken intraoperatively from 33 patients (23 PTC patients and 10 patients with other thyroid disease). In the initial group of 16 PTC and 16 normal samples, we assessed the sources of variability in the gene expression profile by singular value decomposition which specified three major patterns of variability. The first and the most distinct mode grouped transcripts differentiating between tumor and normal tissues. Two consecutive modes contained a large proportion of immunity-related genes. To generate a multigene classifier for tumor-normal difference, we used support vector machines-based technique (recursive feature replacement). It included the following 19 genes: DPP4, GJB3, ST14, SERPINA1, LRP4, MET, EVA1, SPUVE, LGALS3, HBB, MKRN2, MRC2, IGSF1, KIAA0830, RXRG, P4HA2, CDH3, IL13RA1, and MTMR4, and correctly discriminated 17 of 18 additional PTC/normal thyroid samples and all 16 samples published in a previous microarray study. Selected novel genes (LRP4, EVA1, TMPRSS4, QPCT, and SLC34A2) were confirmed by Q-PCR. Our results prove that the gene expression signal of PTC is easily detectable even when cancer cells do not prevail over tumor stroma. We indicate and separate the confounding variability related to the immune response. Finally, we propose a potent molecular classifier able to discriminate between PTC and nonmalignant thyroid in more than 90% of investigated samples.
doi_str_mv 10.1158/0008-5472.can-04-3078
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67472248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67472248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-f4d19e6d98bd91f099b2f10f4811fb1d70745562f1115b731768d865953570363</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0EoqXwCSBvYJdiN36FXVVBQapgAawtx49ilCbBThD9exy1oktW1lhn7mjOAHCJ0RRjKm4RQiKjhM-mWtUZIlmOuDgCY0xzkXFC6DEY_zEjcBbjZyopRvQUjDDlOUWkGIP10tYW2p822Bh9U8M2NM5XFjYOtqr1VaXCFnYf29B4A9MobcMdfG36oG0coG8VvCp95bstVLWBxqt13cTOa-g3beW16lJsPAcnTlXRXuzfCXh_uH9bPGarl-XTYr7KNGG8yxwxuLDMFKI0BXaoKMqZw8gRgbErseGIE0pZ-ksSSp5jzoQRjBY0pxzlLJ-Am11u2uOrt7GTGx-1TWvUtumjZDzpmBHxL4i5yIf4BNIdqEMTY7BOtsFvkhWJkRxOIQfNctAsF_NniYgcTpH6rvYD-nJjzaFr7z4B13tARa0qF5JcHw8cowyzxP0C0HaSAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17833176</pqid></control><display><type>article</type><title>Gene expression profile of papillary thyroid cancer: Sources of variability and diagnostic implications</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>JARZAB, Barbara ; WIENCH, Malgorzata ; PAWLACZEK, Agnieszka ; SZPAK, Sylwia ; GUBAŁA, Elzbieta ; SWIERNIAK, Andrzej ; FUJAREWICZ, Krzysztof ; SIMEK, Krzysztof ; JARZAB, Michal ; OCZKO-WOJCIECHOWSKA, Malgorzata ; WŁOCH, Jan ; CZARNIECKA, Agnieszka ; CHMIELIK, Ewa ; LANGE, Dariusz</creator><creatorcontrib>JARZAB, Barbara ; WIENCH, Malgorzata ; PAWLACZEK, Agnieszka ; SZPAK, Sylwia ; GUBAŁA, Elzbieta ; SWIERNIAK, Andrzej ; FUJAREWICZ, Krzysztof ; SIMEK, Krzysztof ; JARZAB, Michal ; OCZKO-WOJCIECHOWSKA, Malgorzata ; WŁOCH, Jan ; CZARNIECKA, Agnieszka ; CHMIELIK, Ewa ; LANGE, Dariusz</creatorcontrib><description>The study looked for an optimal set of genes differentiating between papillary thyroid cancer (PTC) and normal thyroid tissue and assessed the sources of variability in gene expression profiles. The analysis was done by oligonucleotide microarrays (GeneChip HG-U133A) in 50 tissue samples taken intraoperatively from 33 patients (23 PTC patients and 10 patients with other thyroid disease). In the initial group of 16 PTC and 16 normal samples, we assessed the sources of variability in the gene expression profile by singular value decomposition which specified three major patterns of variability. The first and the most distinct mode grouped transcripts differentiating between tumor and normal tissues. Two consecutive modes contained a large proportion of immunity-related genes. To generate a multigene classifier for tumor-normal difference, we used support vector machines-based technique (recursive feature replacement). It included the following 19 genes: DPP4, GJB3, ST14, SERPINA1, LRP4, MET, EVA1, SPUVE, LGALS3, HBB, MKRN2, MRC2, IGSF1, KIAA0830, RXRG, P4HA2, CDH3, IL13RA1, and MTMR4, and correctly discriminated 17 of 18 additional PTC/normal thyroid samples and all 16 samples published in a previous microarray study. Selected novel genes (LRP4, EVA1, TMPRSS4, QPCT, and SLC34A2) were confirmed by Q-PCR. Our results prove that the gene expression signal of PTC is easily detectable even when cancer cells do not prevail over tumor stroma. We indicate and separate the confounding variability related to the immune response. Finally, we propose a potent molecular classifier able to discriminate between PTC and nonmalignant thyroid in more than 90% of investigated samples.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-04-3078</identifier><identifier>PMID: 15735049</identifier><identifier>CODEN: CNREA8</identifier><language>eng</language><publisher>Philadelphia, PA: American Association for Cancer Research</publisher><subject>Adolescent ; Adult ; Aged ; Antineoplastic agents ; Biological and medical sciences ; Carcinoma, Papillary - diagnosis ; Carcinoma, Papillary - genetics ; Carcinoma, Papillary - metabolism ; Child ; Child, Preschool ; Endocrinopathies ; Female ; Gene Expression Profiling ; Humans ; Male ; Medical sciences ; Middle Aged ; Non tumoral diseases. Target tissue resistance. Benign neoplasms ; Oligonucleotide Array Sequence Analysis ; Pharmacology. Drug treatments ; Reproducibility of Results ; Thyroid Neoplasms - diagnosis ; Thyroid Neoplasms - genetics ; Thyroid Neoplasms - metabolism ; Thyroid. Thyroid axis (diseases)</subject><ispartof>Cancer research (Chicago, Ill.), 2005-02, Vol.65 (4), p.1587-1597</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-f4d19e6d98bd91f099b2f10f4811fb1d70745562f1115b731768d865953570363</citedby><cites>FETCH-LOGICAL-c467t-f4d19e6d98bd91f099b2f10f4811fb1d70745562f1115b731768d865953570363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3343,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16561649$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15735049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>JARZAB, Barbara</creatorcontrib><creatorcontrib>WIENCH, Malgorzata</creatorcontrib><creatorcontrib>PAWLACZEK, Agnieszka</creatorcontrib><creatorcontrib>SZPAK, Sylwia</creatorcontrib><creatorcontrib>GUBAŁA, Elzbieta</creatorcontrib><creatorcontrib>SWIERNIAK, Andrzej</creatorcontrib><creatorcontrib>FUJAREWICZ, Krzysztof</creatorcontrib><creatorcontrib>SIMEK, Krzysztof</creatorcontrib><creatorcontrib>JARZAB, Michal</creatorcontrib><creatorcontrib>OCZKO-WOJCIECHOWSKA, Malgorzata</creatorcontrib><creatorcontrib>WŁOCH, Jan</creatorcontrib><creatorcontrib>CZARNIECKA, Agnieszka</creatorcontrib><creatorcontrib>CHMIELIK, Ewa</creatorcontrib><creatorcontrib>LANGE, Dariusz</creatorcontrib><title>Gene expression profile of papillary thyroid cancer: Sources of variability and diagnostic implications</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>The study looked for an optimal set of genes differentiating between papillary thyroid cancer (PTC) and normal thyroid tissue and assessed the sources of variability in gene expression profiles. The analysis was done by oligonucleotide microarrays (GeneChip HG-U133A) in 50 tissue samples taken intraoperatively from 33 patients (23 PTC patients and 10 patients with other thyroid disease). In the initial group of 16 PTC and 16 normal samples, we assessed the sources of variability in the gene expression profile by singular value decomposition which specified three major patterns of variability. The first and the most distinct mode grouped transcripts differentiating between tumor and normal tissues. Two consecutive modes contained a large proportion of immunity-related genes. To generate a multigene classifier for tumor-normal difference, we used support vector machines-based technique (recursive feature replacement). It included the following 19 genes: DPP4, GJB3, ST14, SERPINA1, LRP4, MET, EVA1, SPUVE, LGALS3, HBB, MKRN2, MRC2, IGSF1, KIAA0830, RXRG, P4HA2, CDH3, IL13RA1, and MTMR4, and correctly discriminated 17 of 18 additional PTC/normal thyroid samples and all 16 samples published in a previous microarray study. Selected novel genes (LRP4, EVA1, TMPRSS4, QPCT, and SLC34A2) were confirmed by Q-PCR. Our results prove that the gene expression signal of PTC is easily detectable even when cancer cells do not prevail over tumor stroma. We indicate and separate the confounding variability related to the immune response. Finally, we propose a potent molecular classifier able to discriminate between PTC and nonmalignant thyroid in more than 90% of investigated samples.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Antineoplastic agents</subject><subject>Biological and medical sciences</subject><subject>Carcinoma, Papillary - diagnosis</subject><subject>Carcinoma, Papillary - genetics</subject><subject>Carcinoma, Papillary - metabolism</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Endocrinopathies</subject><subject>Female</subject><subject>Gene Expression Profiling</subject><subject>Humans</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Non tumoral diseases. Target tissue resistance. Benign neoplasms</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Pharmacology. Drug treatments</subject><subject>Reproducibility of Results</subject><subject>Thyroid Neoplasms - diagnosis</subject><subject>Thyroid Neoplasms - genetics</subject><subject>Thyroid Neoplasms - metabolism</subject><subject>Thyroid. Thyroid axis (diseases)</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctOwzAQRS0EoqXwCSBvYJdiN36FXVVBQapgAawtx49ilCbBThD9exy1oktW1lhn7mjOAHCJ0RRjKm4RQiKjhM-mWtUZIlmOuDgCY0xzkXFC6DEY_zEjcBbjZyopRvQUjDDlOUWkGIP10tYW2p822Bh9U8M2NM5XFjYOtqr1VaXCFnYf29B4A9MobcMdfG36oG0coG8VvCp95bstVLWBxqt13cTOa-g3beW16lJsPAcnTlXRXuzfCXh_uH9bPGarl-XTYr7KNGG8yxwxuLDMFKI0BXaoKMqZw8gRgbErseGIE0pZ-ksSSp5jzoQRjBY0pxzlLJ-Am11u2uOrt7GTGx-1TWvUtumjZDzpmBHxL4i5yIf4BNIdqEMTY7BOtsFvkhWJkRxOIQfNctAsF_NniYgcTpH6rvYD-nJjzaFr7z4B13tARa0qF5JcHw8cowyzxP0C0HaSAg</recordid><startdate>20050215</startdate><enddate>20050215</enddate><creator>JARZAB, Barbara</creator><creator>WIENCH, Malgorzata</creator><creator>PAWLACZEK, Agnieszka</creator><creator>SZPAK, Sylwia</creator><creator>GUBAŁA, Elzbieta</creator><creator>SWIERNIAK, Andrzej</creator><creator>FUJAREWICZ, Krzysztof</creator><creator>SIMEK, Krzysztof</creator><creator>JARZAB, Michal</creator><creator>OCZKO-WOJCIECHOWSKA, Malgorzata</creator><creator>WŁOCH, Jan</creator><creator>CZARNIECKA, Agnieszka</creator><creator>CHMIELIK, Ewa</creator><creator>LANGE, Dariusz</creator><general>American Association for Cancer Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20050215</creationdate><title>Gene expression profile of papillary thyroid cancer: Sources of variability and diagnostic implications</title><author>JARZAB, Barbara ; WIENCH, Malgorzata ; PAWLACZEK, Agnieszka ; SZPAK, Sylwia ; GUBAŁA, Elzbieta ; SWIERNIAK, Andrzej ; FUJAREWICZ, Krzysztof ; SIMEK, Krzysztof ; JARZAB, Michal ; OCZKO-WOJCIECHOWSKA, Malgorzata ; WŁOCH, Jan ; CZARNIECKA, Agnieszka ; CHMIELIK, Ewa ; LANGE, Dariusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-f4d19e6d98bd91f099b2f10f4811fb1d70745562f1115b731768d865953570363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Antineoplastic agents</topic><topic>Biological and medical sciences</topic><topic>Carcinoma, Papillary - diagnosis</topic><topic>Carcinoma, Papillary - genetics</topic><topic>Carcinoma, Papillary - metabolism</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Endocrinopathies</topic><topic>Female</topic><topic>Gene Expression Profiling</topic><topic>Humans</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Non tumoral diseases. Target tissue resistance. Benign neoplasms</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Pharmacology. Drug treatments</topic><topic>Reproducibility of Results</topic><topic>Thyroid Neoplasms - diagnosis</topic><topic>Thyroid Neoplasms - genetics</topic><topic>Thyroid Neoplasms - metabolism</topic><topic>Thyroid. Thyroid axis (diseases)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JARZAB, Barbara</creatorcontrib><creatorcontrib>WIENCH, Malgorzata</creatorcontrib><creatorcontrib>PAWLACZEK, Agnieszka</creatorcontrib><creatorcontrib>SZPAK, Sylwia</creatorcontrib><creatorcontrib>GUBAŁA, Elzbieta</creatorcontrib><creatorcontrib>SWIERNIAK, Andrzej</creatorcontrib><creatorcontrib>FUJAREWICZ, Krzysztof</creatorcontrib><creatorcontrib>SIMEK, Krzysztof</creatorcontrib><creatorcontrib>JARZAB, Michal</creatorcontrib><creatorcontrib>OCZKO-WOJCIECHOWSKA, Malgorzata</creatorcontrib><creatorcontrib>WŁOCH, Jan</creatorcontrib><creatorcontrib>CZARNIECKA, Agnieszka</creatorcontrib><creatorcontrib>CHMIELIK, Ewa</creatorcontrib><creatorcontrib>LANGE, Dariusz</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JARZAB, Barbara</au><au>WIENCH, Malgorzata</au><au>PAWLACZEK, Agnieszka</au><au>SZPAK, Sylwia</au><au>GUBAŁA, Elzbieta</au><au>SWIERNIAK, Andrzej</au><au>FUJAREWICZ, Krzysztof</au><au>SIMEK, Krzysztof</au><au>JARZAB, Michal</au><au>OCZKO-WOJCIECHOWSKA, Malgorzata</au><au>WŁOCH, Jan</au><au>CZARNIECKA, Agnieszka</au><au>CHMIELIK, Ewa</au><au>LANGE, Dariusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene expression profile of papillary thyroid cancer: Sources of variability and diagnostic implications</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2005-02-15</date><risdate>2005</risdate><volume>65</volume><issue>4</issue><spage>1587</spage><epage>1597</epage><pages>1587-1597</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><coden>CNREA8</coden><abstract>The study looked for an optimal set of genes differentiating between papillary thyroid cancer (PTC) and normal thyroid tissue and assessed the sources of variability in gene expression profiles. The analysis was done by oligonucleotide microarrays (GeneChip HG-U133A) in 50 tissue samples taken intraoperatively from 33 patients (23 PTC patients and 10 patients with other thyroid disease). In the initial group of 16 PTC and 16 normal samples, we assessed the sources of variability in the gene expression profile by singular value decomposition which specified three major patterns of variability. The first and the most distinct mode grouped transcripts differentiating between tumor and normal tissues. Two consecutive modes contained a large proportion of immunity-related genes. To generate a multigene classifier for tumor-normal difference, we used support vector machines-based technique (recursive feature replacement). It included the following 19 genes: DPP4, GJB3, ST14, SERPINA1, LRP4, MET, EVA1, SPUVE, LGALS3, HBB, MKRN2, MRC2, IGSF1, KIAA0830, RXRG, P4HA2, CDH3, IL13RA1, and MTMR4, and correctly discriminated 17 of 18 additional PTC/normal thyroid samples and all 16 samples published in a previous microarray study. Selected novel genes (LRP4, EVA1, TMPRSS4, QPCT, and SLC34A2) were confirmed by Q-PCR. Our results prove that the gene expression signal of PTC is easily detectable even when cancer cells do not prevail over tumor stroma. We indicate and separate the confounding variability related to the immune response. Finally, we propose a potent molecular classifier able to discriminate between PTC and nonmalignant thyroid in more than 90% of investigated samples.</abstract><cop>Philadelphia, PA</cop><pub>American Association for Cancer Research</pub><pmid>15735049</pmid><doi>10.1158/0008-5472.can-04-3078</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2005-02, Vol.65 (4), p.1587-1597
issn 0008-5472
1538-7445
language eng
recordid cdi_proquest_miscellaneous_67472248
source MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals
subjects Adolescent
Adult
Aged
Antineoplastic agents
Biological and medical sciences
Carcinoma, Papillary - diagnosis
Carcinoma, Papillary - genetics
Carcinoma, Papillary - metabolism
Child
Child, Preschool
Endocrinopathies
Female
Gene Expression Profiling
Humans
Male
Medical sciences
Middle Aged
Non tumoral diseases. Target tissue resistance. Benign neoplasms
Oligonucleotide Array Sequence Analysis
Pharmacology. Drug treatments
Reproducibility of Results
Thyroid Neoplasms - diagnosis
Thyroid Neoplasms - genetics
Thyroid Neoplasms - metabolism
Thyroid. Thyroid axis (diseases)
title Gene expression profile of papillary thyroid cancer: Sources of variability and diagnostic implications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A52%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20expression%20profile%20of%20papillary%20thyroid%20cancer:%20Sources%20of%20variability%20and%20diagnostic%20implications&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=JARZAB,%20Barbara&rft.date=2005-02-15&rft.volume=65&rft.issue=4&rft.spage=1587&rft.epage=1597&rft.pages=1587-1597&rft.issn=0008-5472&rft.eissn=1538-7445&rft.coden=CNREA8&rft_id=info:doi/10.1158/0008-5472.can-04-3078&rft_dat=%3Cproquest_cross%3E67472248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17833176&rft_id=info:pmid/15735049&rfr_iscdi=true