Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters

Measurements of local Ca2+ signalling at different developmental stages and/or in specific cell types is important for understanding aspects of brain functioning. The use of light excitation in fluorescence imaging can cause phototoxicity, photobleaching and auto‐fluorescence. In contrast, biolumine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European journal of neuroscience 2005-02, Vol.21 (3), p.597-610
Hauptverfasser: Rogers, Kelly L., Stinnakre, Jacques, Agulhon, Cendra, Jublot, Delphine, Shorte, Spencer L., Kremer, Eric J., Brûlet, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 610
container_issue 3
container_start_page 597
container_title The European journal of neuroscience
container_volume 21
creator Rogers, Kelly L.
Stinnakre, Jacques
Agulhon, Cendra
Jublot, Delphine
Shorte, Spencer L.
Kremer, Eric J.
Brûlet, Philippe
description Measurements of local Ca2+ signalling at different developmental stages and/or in specific cell types is important for understanding aspects of brain functioning. The use of light excitation in fluorescence imaging can cause phototoxicity, photobleaching and auto‐fluorescence. In contrast, bioluminescence does not require the input of radiative energy and can therefore be measured over long periods, with very high temporal resolution. Aequorin is a genetically encoded Ca2+‐sensitive bioluminescent protein, however, its low quantum yield prevents dynamic measurements of Ca2+ responses in single cells. To overcome this limitation, we recently reported the bi‐functional Ca2+ reporter gene, GFP‐aequorin (GA), which was developed specifically to improve the light output and stability of aequorin chimeras [V. Baubet, et al., (2000) PNAS, 97, 7260–7265]. In the current study, we have genetically targeted GA to different microdomains important in synaptic transmission, including to the mitochondrial matrix, endoplasmic reticulum, synaptic vesicles and to the postsynaptic density. We demonstrate that these reporters enable ‘real‐time’ measurements of subcellular Ca2+ changes in single mammalian neurons using bioluminescence. The high signal‐to‐noise ratio of these reporters is also important in that it affords the visualization of Ca2+ dynamics in cell–cell communication in neuronal cultures and tissue slices. Further, we demonstrate the utility of this approach in ex‐vivo preparations of mammalian retina, a paradigm in which external light input should be controlled. This represents a novel molecular imaging approach for non‐invasive monitoring of local Ca2+ dynamics and cellular communication in tissue or whole animal studies.
doi_str_mv 10.1111/j.1460-9568.2005.03871.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67468169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67468169</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2811-68f2bbec1c0970e6864b438c415c2c3cf97f6dba8062d0f06a0452f2df79d53e3</originalsourceid><addsrcrecordid>eNpFkE9v1DAQxS0EotvSr4B86gUljOPYcQ4cqlX_qlqEgNKb5TgT6q2TbONE3eXT12FLmcuM9N4bPf0IoQxSFufzOmW5hKQUUqUZgEiBq4Kl2zdk8Sq8JQsoBU8Uk3cH5DCENQAomYv35ICJgnMoygW5vXVhMt79MaPrO9o31PfWeLo02Sda7zrTOhvokxvv6W_scHRR9DuKne1rrGnlej-1rsNgsRvpgJt-GHEIH8i7xviAxy_7iPw8P_uxvExuvl5cLU9vEpcpxhKpmqyq0DILZQEoY70q58rmTNjMctuURSPryiiQWQ0NSAO5yJqsboqyFhz5ETnZ_90M_eOEYdSti1W8Nx32U9CyyGUEUEbjxxfjVLVY683gWjPs9D8S0fBlb3hyHnf_ddAzcb3WM1g9g9Uzcf2XuN7qs-vVfMV8ss-7MOL2NW-Gh1iCF0L_Wl3oa7WE8-_fSr3iz4KQhEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67468169</pqid></control><display><type>article</type><title>Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Rogers, Kelly L. ; Stinnakre, Jacques ; Agulhon, Cendra ; Jublot, Delphine ; Shorte, Spencer L. ; Kremer, Eric J. ; Brûlet, Philippe</creator><creatorcontrib>Rogers, Kelly L. ; Stinnakre, Jacques ; Agulhon, Cendra ; Jublot, Delphine ; Shorte, Spencer L. ; Kremer, Eric J. ; Brûlet, Philippe</creatorcontrib><description>Measurements of local Ca2+ signalling at different developmental stages and/or in specific cell types is important for understanding aspects of brain functioning. The use of light excitation in fluorescence imaging can cause phototoxicity, photobleaching and auto‐fluorescence. In contrast, bioluminescence does not require the input of radiative energy and can therefore be measured over long periods, with very high temporal resolution. Aequorin is a genetically encoded Ca2+‐sensitive bioluminescent protein, however, its low quantum yield prevents dynamic measurements of Ca2+ responses in single cells. To overcome this limitation, we recently reported the bi‐functional Ca2+ reporter gene, GFP‐aequorin (GA), which was developed specifically to improve the light output and stability of aequorin chimeras [V. Baubet, et al., (2000) PNAS, 97, 7260–7265]. In the current study, we have genetically targeted GA to different microdomains important in synaptic transmission, including to the mitochondrial matrix, endoplasmic reticulum, synaptic vesicles and to the postsynaptic density. We demonstrate that these reporters enable ‘real‐time’ measurements of subcellular Ca2+ changes in single mammalian neurons using bioluminescence. The high signal‐to‐noise ratio of these reporters is also important in that it affords the visualization of Ca2+ dynamics in cell–cell communication in neuronal cultures and tissue slices. Further, we demonstrate the utility of this approach in ex‐vivo preparations of mammalian retina, a paradigm in which external light input should be controlled. This represents a novel molecular imaging approach for non‐invasive monitoring of local Ca2+ dynamics and cellular communication in tissue or whole animal studies.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/j.1460-9568.2005.03871.x</identifier><identifier>PMID: 15733079</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Aequorin - analysis ; Aequorin - genetics ; Animals ; bioluminescence imaging ; Ca2+ microdomains ; Ca2+-dependent neural activity ; Calcium Signaling - physiology ; Cells, Cultured ; Cercopithecus aethiops ; Cerebral Cortex - chemistry ; COS Cells ; Humans ; In Vitro Techniques ; Luminescent Measurements - methods ; Luminescent Proteins - analysis ; Luminescent Proteins - genetics ; Mice</subject><ispartof>The European journal of neuroscience, 2005-02, Vol.21 (3), p.597-610</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1460-9568.2005.03871.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1460-9568.2005.03871.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15733079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rogers, Kelly L.</creatorcontrib><creatorcontrib>Stinnakre, Jacques</creatorcontrib><creatorcontrib>Agulhon, Cendra</creatorcontrib><creatorcontrib>Jublot, Delphine</creatorcontrib><creatorcontrib>Shorte, Spencer L.</creatorcontrib><creatorcontrib>Kremer, Eric J.</creatorcontrib><creatorcontrib>Brûlet, Philippe</creatorcontrib><title>Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>Measurements of local Ca2+ signalling at different developmental stages and/or in specific cell types is important for understanding aspects of brain functioning. The use of light excitation in fluorescence imaging can cause phototoxicity, photobleaching and auto‐fluorescence. In contrast, bioluminescence does not require the input of radiative energy and can therefore be measured over long periods, with very high temporal resolution. Aequorin is a genetically encoded Ca2+‐sensitive bioluminescent protein, however, its low quantum yield prevents dynamic measurements of Ca2+ responses in single cells. To overcome this limitation, we recently reported the bi‐functional Ca2+ reporter gene, GFP‐aequorin (GA), which was developed specifically to improve the light output and stability of aequorin chimeras [V. Baubet, et al., (2000) PNAS, 97, 7260–7265]. In the current study, we have genetically targeted GA to different microdomains important in synaptic transmission, including to the mitochondrial matrix, endoplasmic reticulum, synaptic vesicles and to the postsynaptic density. We demonstrate that these reporters enable ‘real‐time’ measurements of subcellular Ca2+ changes in single mammalian neurons using bioluminescence. The high signal‐to‐noise ratio of these reporters is also important in that it affords the visualization of Ca2+ dynamics in cell–cell communication in neuronal cultures and tissue slices. Further, we demonstrate the utility of this approach in ex‐vivo preparations of mammalian retina, a paradigm in which external light input should be controlled. This represents a novel molecular imaging approach for non‐invasive monitoring of local Ca2+ dynamics and cellular communication in tissue or whole animal studies.</description><subject>Aequorin - analysis</subject><subject>Aequorin - genetics</subject><subject>Animals</subject><subject>bioluminescence imaging</subject><subject>Ca2+ microdomains</subject><subject>Ca2+-dependent neural activity</subject><subject>Calcium Signaling - physiology</subject><subject>Cells, Cultured</subject><subject>Cercopithecus aethiops</subject><subject>Cerebral Cortex - chemistry</subject><subject>COS Cells</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Luminescent Measurements - methods</subject><subject>Luminescent Proteins - analysis</subject><subject>Luminescent Proteins - genetics</subject><subject>Mice</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE9v1DAQxS0EotvSr4B86gUljOPYcQ4cqlX_qlqEgNKb5TgT6q2TbONE3eXT12FLmcuM9N4bPf0IoQxSFufzOmW5hKQUUqUZgEiBq4Kl2zdk8Sq8JQsoBU8Uk3cH5DCENQAomYv35ICJgnMoygW5vXVhMt79MaPrO9o31PfWeLo02Sda7zrTOhvokxvv6W_scHRR9DuKne1rrGnlej-1rsNgsRvpgJt-GHEIH8i7xviAxy_7iPw8P_uxvExuvl5cLU9vEpcpxhKpmqyq0DILZQEoY70q58rmTNjMctuURSPryiiQWQ0NSAO5yJqsboqyFhz5ETnZ_90M_eOEYdSti1W8Nx32U9CyyGUEUEbjxxfjVLVY683gWjPs9D8S0fBlb3hyHnf_ddAzcb3WM1g9g9Uzcf2XuN7qs-vVfMV8ss-7MOL2NW-Gh1iCF0L_Wl3oa7WE8-_fSr3iz4KQhEY</recordid><startdate>200502</startdate><enddate>200502</enddate><creator>Rogers, Kelly L.</creator><creator>Stinnakre, Jacques</creator><creator>Agulhon, Cendra</creator><creator>Jublot, Delphine</creator><creator>Shorte, Spencer L.</creator><creator>Kremer, Eric J.</creator><creator>Brûlet, Philippe</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200502</creationdate><title>Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters</title><author>Rogers, Kelly L. ; Stinnakre, Jacques ; Agulhon, Cendra ; Jublot, Delphine ; Shorte, Spencer L. ; Kremer, Eric J. ; Brûlet, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2811-68f2bbec1c0970e6864b438c415c2c3cf97f6dba8062d0f06a0452f2df79d53e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Aequorin - analysis</topic><topic>Aequorin - genetics</topic><topic>Animals</topic><topic>bioluminescence imaging</topic><topic>Ca2+ microdomains</topic><topic>Ca2+-dependent neural activity</topic><topic>Calcium Signaling - physiology</topic><topic>Cells, Cultured</topic><topic>Cercopithecus aethiops</topic><topic>Cerebral Cortex - chemistry</topic><topic>COS Cells</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Luminescent Measurements - methods</topic><topic>Luminescent Proteins - analysis</topic><topic>Luminescent Proteins - genetics</topic><topic>Mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rogers, Kelly L.</creatorcontrib><creatorcontrib>Stinnakre, Jacques</creatorcontrib><creatorcontrib>Agulhon, Cendra</creatorcontrib><creatorcontrib>Jublot, Delphine</creatorcontrib><creatorcontrib>Shorte, Spencer L.</creatorcontrib><creatorcontrib>Kremer, Eric J.</creatorcontrib><creatorcontrib>Brûlet, Philippe</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rogers, Kelly L.</au><au>Stinnakre, Jacques</au><au>Agulhon, Cendra</au><au>Jublot, Delphine</au><au>Shorte, Spencer L.</au><au>Kremer, Eric J.</au><au>Brûlet, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2005-02</date><risdate>2005</risdate><volume>21</volume><issue>3</issue><spage>597</spage><epage>610</epage><pages>597-610</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>Measurements of local Ca2+ signalling at different developmental stages and/or in specific cell types is important for understanding aspects of brain functioning. The use of light excitation in fluorescence imaging can cause phototoxicity, photobleaching and auto‐fluorescence. In contrast, bioluminescence does not require the input of radiative energy and can therefore be measured over long periods, with very high temporal resolution. Aequorin is a genetically encoded Ca2+‐sensitive bioluminescent protein, however, its low quantum yield prevents dynamic measurements of Ca2+ responses in single cells. To overcome this limitation, we recently reported the bi‐functional Ca2+ reporter gene, GFP‐aequorin (GA), which was developed specifically to improve the light output and stability of aequorin chimeras [V. Baubet, et al., (2000) PNAS, 97, 7260–7265]. In the current study, we have genetically targeted GA to different microdomains important in synaptic transmission, including to the mitochondrial matrix, endoplasmic reticulum, synaptic vesicles and to the postsynaptic density. We demonstrate that these reporters enable ‘real‐time’ measurements of subcellular Ca2+ changes in single mammalian neurons using bioluminescence. The high signal‐to‐noise ratio of these reporters is also important in that it affords the visualization of Ca2+ dynamics in cell–cell communication in neuronal cultures and tissue slices. Further, we demonstrate the utility of this approach in ex‐vivo preparations of mammalian retina, a paradigm in which external light input should be controlled. This represents a novel molecular imaging approach for non‐invasive monitoring of local Ca2+ dynamics and cellular communication in tissue or whole animal studies.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>15733079</pmid><doi>10.1111/j.1460-9568.2005.03871.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0953-816X
ispartof The European journal of neuroscience, 2005-02, Vol.21 (3), p.597-610
issn 0953-816X
1460-9568
language eng
recordid cdi_proquest_miscellaneous_67468169
source MEDLINE; Wiley Online Library All Journals
subjects Aequorin - analysis
Aequorin - genetics
Animals
bioluminescence imaging
Ca2+ microdomains
Ca2+-dependent neural activity
Calcium Signaling - physiology
Cells, Cultured
Cercopithecus aethiops
Cerebral Cortex - chemistry
COS Cells
Humans
In Vitro Techniques
Luminescent Measurements - methods
Luminescent Proteins - analysis
Luminescent Proteins - genetics
Mice
title Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualization%20of%20local%20Ca2+%20dynamics%20with%20genetically%20encoded%20bioluminescent%20reporters&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Rogers,%20Kelly%20L.&rft.date=2005-02&rft.volume=21&rft.issue=3&rft.spage=597&rft.epage=610&rft.pages=597-610&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/j.1460-9568.2005.03871.x&rft_dat=%3Cproquest_pubme%3E67468169%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67468169&rft_id=info:pmid/15733079&rfr_iscdi=true