High Glucose Induces Human Endothelial Cell Apoptosis Through a Phosphoinositide 3-Kinase–Regulated Cyclooxygenase-2 Pathway

OBJECTIVES—Diabetes mellitus causes endothelial dysfunction. The precise molecular mechanisms by which hyperglycemia causes apoptosis in endothelial cells are not yet well understood. The aim of this study was to explore the role of cyclooxygenase-2 (COX-2) and the possible involvement of phosphoino...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2005-03, Vol.25 (3), p.539-545
Hauptverfasser: Sheu, Meei Ling, Ho, Feng Ming, Yang, Rong Sen, Chao, Kuo Fang, Lin, Wan Wan, Lin-Shiau, Shoei Yn, Liu, Shing-Hwa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 545
container_issue 3
container_start_page 539
container_title Arteriosclerosis, thrombosis, and vascular biology
container_volume 25
creator Sheu, Meei Ling
Ho, Feng Ming
Yang, Rong Sen
Chao, Kuo Fang
Lin, Wan Wan
Lin-Shiau, Shoei Yn
Liu, Shing-Hwa
description OBJECTIVES—Diabetes mellitus causes endothelial dysfunction. The precise molecular mechanisms by which hyperglycemia causes apoptosis in endothelial cells are not yet well understood. The aim of this study was to explore the role of cyclooxygenase-2 (COX-2) and the possible involvement of phosphoinositide 3-kinase (PI3K) signaling in high glucose (HG)–induced apoptosis in human umbilical vein endothelial cells (HUVECs). METHODS AND RESULTS—For detection of apoptosis, the morphological Hoechst staining and Annexin V/propidium iodide staining were used. Glucose upregulated COX-2 protein expression, which was associated with the induction of prostaglandin (PG) E2 (PGE2), caspase-3 activity, and apoptosis. Unexpectedly, we found that PI3K inhibitors could suppress COX-2 expression, PGE2 production, caspase-3 activity, and the subsequent apoptosis under HG condition. Glucose-induced activation of PI3K resulted in the downstream effector Akt phosphorylation. PI3K inhibitors effectively attenuated the intracellular reactive oxygen species (ROS) generation and nuclear factor κB (NF-κB) activation. Blocking the PI3K and Akt activities with the dominant-negative vectors greatly diminished the HG-triggered NF-κB activation and COX-2 expression and apoptosis. CONCLUSIONS—These results suggest that HG, via PI3K/Akt signaling, induces NF-κB–related upregulation of COX-2, which in turn triggers the caspase-3 activity that facilitates HUVEC apoptosis. Also, HG may cause ROS generation in HUVECs through a PI3K/Akt–dependent pathway.
doi_str_mv 10.1161/01.ATV.0000155462.24263.e4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67458462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>925972621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5705-2e1613aec11aec13788104943e027d95c3d4d78dc79b8210174d73dec64f23903</originalsourceid><addsrcrecordid>eNpdkd1u0zAUxyMEYmPwCsiaxO4S_O2Eu6oa68QkJlS4tTzntMlw42LHKr1BvANvyJPgrJUq4Qv7HPt3fD7-RXFJcEWIJO8xqWbLbxXOiwjBJa0op5JVwJ8V50RQXnLJ5PNsY9WUQnJ6VryK8THznFL8sjgjQgompDwvfi36dYduXLI-Arod2mQhokXamAFdD60fO3C9cWgOzqHZ1m9HH_uIll3wKQcadN_5uO18P-T7sW8BsfJTP5gIf3__-QLr5MwILZrvrfP-534N01NJ0b0Zu53Zvy5erIyL8OZ4XhRfP14v54vy7vPN7Xx2V1qhsCgp5L6ZAUvItDFV1wTzhjPAVLWNsKzlrapbq5qHmhJMVHZZC1byFWUNZhfF1eHfbfA_EsRRb_poc09mAJ-iloqLOk8yg5f_gY8-hSHXpinmjBJFSYY-HCAbfIwBVnob-o0Je02wniTSmOgskT5JpJ8k0sBz8NtjhvSwgfYUetQkA--OgInWuFUwg-3jiZNCNlhNHD9wO-9GCPG7SzsIugPjxm5KzZmcZoexwCy75VMx7B9f-Kps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204321721</pqid></control><display><type>article</type><title>High Glucose Induces Human Endothelial Cell Apoptosis Through a Phosphoinositide 3-Kinase–Regulated Cyclooxygenase-2 Pathway</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>Alma/SFX Local Collection</source><creator>Sheu, Meei Ling ; Ho, Feng Ming ; Yang, Rong Sen ; Chao, Kuo Fang ; Lin, Wan Wan ; Lin-Shiau, Shoei Yn ; Liu, Shing-Hwa</creator><creatorcontrib>Sheu, Meei Ling ; Ho, Feng Ming ; Yang, Rong Sen ; Chao, Kuo Fang ; Lin, Wan Wan ; Lin-Shiau, Shoei Yn ; Liu, Shing-Hwa</creatorcontrib><description>OBJECTIVES—Diabetes mellitus causes endothelial dysfunction. The precise molecular mechanisms by which hyperglycemia causes apoptosis in endothelial cells are not yet well understood. The aim of this study was to explore the role of cyclooxygenase-2 (COX-2) and the possible involvement of phosphoinositide 3-kinase (PI3K) signaling in high glucose (HG)–induced apoptosis in human umbilical vein endothelial cells (HUVECs). METHODS AND RESULTS—For detection of apoptosis, the morphological Hoechst staining and Annexin V/propidium iodide staining were used. Glucose upregulated COX-2 protein expression, which was associated with the induction of prostaglandin (PG) E2 (PGE2), caspase-3 activity, and apoptosis. Unexpectedly, we found that PI3K inhibitors could suppress COX-2 expression, PGE2 production, caspase-3 activity, and the subsequent apoptosis under HG condition. Glucose-induced activation of PI3K resulted in the downstream effector Akt phosphorylation. PI3K inhibitors effectively attenuated the intracellular reactive oxygen species (ROS) generation and nuclear factor κB (NF-κB) activation. Blocking the PI3K and Akt activities with the dominant-negative vectors greatly diminished the HG-triggered NF-κB activation and COX-2 expression and apoptosis. CONCLUSIONS—These results suggest that HG, via PI3K/Akt signaling, induces NF-κB–related upregulation of COX-2, which in turn triggers the caspase-3 activity that facilitates HUVEC apoptosis. Also, HG may cause ROS generation in HUVECs through a PI3K/Akt–dependent pathway.</description><identifier>ISSN: 1079-5642</identifier><identifier>EISSN: 1524-4636</identifier><identifier>DOI: 10.1161/01.ATV.0000155462.24263.e4</identifier><identifier>PMID: 15653566</identifier><identifier>CODEN: ATVBFA</identifier><language>eng</language><publisher>Philadelphia, PA: American Heart Association, Inc</publisher><subject>Apoptosis - drug effects ; Apoptosis - physiology ; Atherosclerosis (general aspects, experimental research) ; Biological and medical sciences ; Blood and lymphatic vessels ; Blood vessels and receptors ; Cardiology. Vascular system ; Caspase 3 ; Caspases - metabolism ; Cells, Cultured ; Chromones - pharmacology ; Cyclooxygenase 2 ; Diabetic Angiopathies - metabolism ; Dinoprostone - metabolism ; Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous ; Endothelium, Vascular - cytology ; Endothelium, Vascular - drug effects ; Endothelium, Vascular - enzymology ; Enzyme Inhibitors - pharmacology ; Fundamental and applied biological sciences. Psychology ; Glucose - pharmacology ; Humans ; Medical sciences ; Membrane Proteins ; Morpholines - pharmacology ; NF-kappa B - metabolism ; Phosphatidylinositol 3-Kinases - antagonists &amp; inhibitors ; Phosphatidylinositol 3-Kinases - metabolism ; Prostaglandin-Endoperoxide Synthases - metabolism ; Protein-Serine-Threonine Kinases - metabolism ; Proto-Oncogene Proteins - metabolism ; Proto-Oncogene Proteins c-akt ; Reactive Oxygen Species - metabolism ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Umbilical Veins - cytology ; Vertebrates: cardiovascular system</subject><ispartof>Arteriosclerosis, thrombosis, and vascular biology, 2005-03, Vol.25 (3), p.539-545</ispartof><rights>2005 American Heart Association, Inc.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright American Heart Association, Inc. Mar 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5705-2e1613aec11aec13788104943e027d95c3d4d78dc79b8210174d73dec64f23903</citedby><cites>FETCH-LOGICAL-c5705-2e1613aec11aec13788104943e027d95c3d4d78dc79b8210174d73dec64f23903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16569076$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15653566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheu, Meei Ling</creatorcontrib><creatorcontrib>Ho, Feng Ming</creatorcontrib><creatorcontrib>Yang, Rong Sen</creatorcontrib><creatorcontrib>Chao, Kuo Fang</creatorcontrib><creatorcontrib>Lin, Wan Wan</creatorcontrib><creatorcontrib>Lin-Shiau, Shoei Yn</creatorcontrib><creatorcontrib>Liu, Shing-Hwa</creatorcontrib><title>High Glucose Induces Human Endothelial Cell Apoptosis Through a Phosphoinositide 3-Kinase–Regulated Cyclooxygenase-2 Pathway</title><title>Arteriosclerosis, thrombosis, and vascular biology</title><addtitle>Arterioscler Thromb Vasc Biol</addtitle><description>OBJECTIVES—Diabetes mellitus causes endothelial dysfunction. The precise molecular mechanisms by which hyperglycemia causes apoptosis in endothelial cells are not yet well understood. The aim of this study was to explore the role of cyclooxygenase-2 (COX-2) and the possible involvement of phosphoinositide 3-kinase (PI3K) signaling in high glucose (HG)–induced apoptosis in human umbilical vein endothelial cells (HUVECs). METHODS AND RESULTS—For detection of apoptosis, the morphological Hoechst staining and Annexin V/propidium iodide staining were used. Glucose upregulated COX-2 protein expression, which was associated with the induction of prostaglandin (PG) E2 (PGE2), caspase-3 activity, and apoptosis. Unexpectedly, we found that PI3K inhibitors could suppress COX-2 expression, PGE2 production, caspase-3 activity, and the subsequent apoptosis under HG condition. Glucose-induced activation of PI3K resulted in the downstream effector Akt phosphorylation. PI3K inhibitors effectively attenuated the intracellular reactive oxygen species (ROS) generation and nuclear factor κB (NF-κB) activation. Blocking the PI3K and Akt activities with the dominant-negative vectors greatly diminished the HG-triggered NF-κB activation and COX-2 expression and apoptosis. CONCLUSIONS—These results suggest that HG, via PI3K/Akt signaling, induces NF-κB–related upregulation of COX-2, which in turn triggers the caspase-3 activity that facilitates HUVEC apoptosis. Also, HG may cause ROS generation in HUVECs through a PI3K/Akt–dependent pathway.</description><subject>Apoptosis - drug effects</subject><subject>Apoptosis - physiology</subject><subject>Atherosclerosis (general aspects, experimental research)</subject><subject>Biological and medical sciences</subject><subject>Blood and lymphatic vessels</subject><subject>Blood vessels and receptors</subject><subject>Cardiology. Vascular system</subject><subject>Caspase 3</subject><subject>Caspases - metabolism</subject><subject>Cells, Cultured</subject><subject>Chromones - pharmacology</subject><subject>Cyclooxygenase 2</subject><subject>Diabetic Angiopathies - metabolism</subject><subject>Dinoprostone - metabolism</subject><subject>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - drug effects</subject><subject>Endothelium, Vascular - enzymology</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose - pharmacology</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Membrane Proteins</subject><subject>Morpholines - pharmacology</subject><subject>NF-kappa B - metabolism</subject><subject>Phosphatidylinositol 3-Kinases - antagonists &amp; inhibitors</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Prostaglandin-Endoperoxide Synthases - metabolism</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-akt</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Umbilical Veins - cytology</subject><subject>Vertebrates: cardiovascular system</subject><issn>1079-5642</issn><issn>1524-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkd1u0zAUxyMEYmPwCsiaxO4S_O2Eu6oa68QkJlS4tTzntMlw42LHKr1BvANvyJPgrJUq4Qv7HPt3fD7-RXFJcEWIJO8xqWbLbxXOiwjBJa0op5JVwJ8V50RQXnLJ5PNsY9WUQnJ6VryK8THznFL8sjgjQgompDwvfi36dYduXLI-Arod2mQhokXamAFdD60fO3C9cWgOzqHZ1m9HH_uIll3wKQcadN_5uO18P-T7sW8BsfJTP5gIf3__-QLr5MwILZrvrfP-534N01NJ0b0Zu53Zvy5erIyL8OZ4XhRfP14v54vy7vPN7Xx2V1qhsCgp5L6ZAUvItDFV1wTzhjPAVLWNsKzlrapbq5qHmhJMVHZZC1byFWUNZhfF1eHfbfA_EsRRb_poc09mAJ-iloqLOk8yg5f_gY8-hSHXpinmjBJFSYY-HCAbfIwBVnob-o0Je02wniTSmOgskT5JpJ8k0sBz8NtjhvSwgfYUetQkA--OgInWuFUwg-3jiZNCNlhNHD9wO-9GCPG7SzsIugPjxm5KzZmcZoexwCy75VMx7B9f-Kps</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Sheu, Meei Ling</creator><creator>Ho, Feng Ming</creator><creator>Yang, Rong Sen</creator><creator>Chao, Kuo Fang</creator><creator>Lin, Wan Wan</creator><creator>Lin-Shiau, Shoei Yn</creator><creator>Liu, Shing-Hwa</creator><general>American Heart Association, Inc</general><general>Lippincott</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>200503</creationdate><title>High Glucose Induces Human Endothelial Cell Apoptosis Through a Phosphoinositide 3-Kinase–Regulated Cyclooxygenase-2 Pathway</title><author>Sheu, Meei Ling ; Ho, Feng Ming ; Yang, Rong Sen ; Chao, Kuo Fang ; Lin, Wan Wan ; Lin-Shiau, Shoei Yn ; Liu, Shing-Hwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5705-2e1613aec11aec13788104943e027d95c3d4d78dc79b8210174d73dec64f23903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Apoptosis - drug effects</topic><topic>Apoptosis - physiology</topic><topic>Atherosclerosis (general aspects, experimental research)</topic><topic>Biological and medical sciences</topic><topic>Blood and lymphatic vessels</topic><topic>Blood vessels and receptors</topic><topic>Cardiology. Vascular system</topic><topic>Caspase 3</topic><topic>Caspases - metabolism</topic><topic>Cells, Cultured</topic><topic>Chromones - pharmacology</topic><topic>Cyclooxygenase 2</topic><topic>Diabetic Angiopathies - metabolism</topic><topic>Dinoprostone - metabolism</topic><topic>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - drug effects</topic><topic>Endothelium, Vascular - enzymology</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose - pharmacology</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Membrane Proteins</topic><topic>Morpholines - pharmacology</topic><topic>NF-kappa B - metabolism</topic><topic>Phosphatidylinositol 3-Kinases - antagonists &amp; inhibitors</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Prostaglandin-Endoperoxide Synthases - metabolism</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-akt</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Umbilical Veins - cytology</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheu, Meei Ling</creatorcontrib><creatorcontrib>Ho, Feng Ming</creatorcontrib><creatorcontrib>Yang, Rong Sen</creatorcontrib><creatorcontrib>Chao, Kuo Fang</creatorcontrib><creatorcontrib>Lin, Wan Wan</creatorcontrib><creatorcontrib>Lin-Shiau, Shoei Yn</creatorcontrib><creatorcontrib>Liu, Shing-Hwa</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheu, Meei Ling</au><au>Ho, Feng Ming</au><au>Yang, Rong Sen</au><au>Chao, Kuo Fang</au><au>Lin, Wan Wan</au><au>Lin-Shiau, Shoei Yn</au><au>Liu, Shing-Hwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Glucose Induces Human Endothelial Cell Apoptosis Through a Phosphoinositide 3-Kinase–Regulated Cyclooxygenase-2 Pathway</atitle><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle><addtitle>Arterioscler Thromb Vasc Biol</addtitle><date>2005-03</date><risdate>2005</risdate><volume>25</volume><issue>3</issue><spage>539</spage><epage>545</epage><pages>539-545</pages><issn>1079-5642</issn><eissn>1524-4636</eissn><coden>ATVBFA</coden><abstract>OBJECTIVES—Diabetes mellitus causes endothelial dysfunction. The precise molecular mechanisms by which hyperglycemia causes apoptosis in endothelial cells are not yet well understood. The aim of this study was to explore the role of cyclooxygenase-2 (COX-2) and the possible involvement of phosphoinositide 3-kinase (PI3K) signaling in high glucose (HG)–induced apoptosis in human umbilical vein endothelial cells (HUVECs). METHODS AND RESULTS—For detection of apoptosis, the morphological Hoechst staining and Annexin V/propidium iodide staining were used. Glucose upregulated COX-2 protein expression, which was associated with the induction of prostaglandin (PG) E2 (PGE2), caspase-3 activity, and apoptosis. Unexpectedly, we found that PI3K inhibitors could suppress COX-2 expression, PGE2 production, caspase-3 activity, and the subsequent apoptosis under HG condition. Glucose-induced activation of PI3K resulted in the downstream effector Akt phosphorylation. PI3K inhibitors effectively attenuated the intracellular reactive oxygen species (ROS) generation and nuclear factor κB (NF-κB) activation. Blocking the PI3K and Akt activities with the dominant-negative vectors greatly diminished the HG-triggered NF-κB activation and COX-2 expression and apoptosis. CONCLUSIONS—These results suggest that HG, via PI3K/Akt signaling, induces NF-κB–related upregulation of COX-2, which in turn triggers the caspase-3 activity that facilitates HUVEC apoptosis. Also, HG may cause ROS generation in HUVECs through a PI3K/Akt–dependent pathway.</abstract><cop>Philadelphia, PA</cop><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>15653566</pmid><doi>10.1161/01.ATV.0000155462.24263.e4</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1079-5642
ispartof Arteriosclerosis, thrombosis, and vascular biology, 2005-03, Vol.25 (3), p.539-545
issn 1079-5642
1524-4636
language eng
recordid cdi_proquest_miscellaneous_67458462
source MEDLINE; Journals@Ovid Complete; Alma/SFX Local Collection
subjects Apoptosis - drug effects
Apoptosis - physiology
Atherosclerosis (general aspects, experimental research)
Biological and medical sciences
Blood and lymphatic vessels
Blood vessels and receptors
Cardiology. Vascular system
Caspase 3
Caspases - metabolism
Cells, Cultured
Chromones - pharmacology
Cyclooxygenase 2
Diabetic Angiopathies - metabolism
Dinoprostone - metabolism
Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous
Endothelium, Vascular - cytology
Endothelium, Vascular - drug effects
Endothelium, Vascular - enzymology
Enzyme Inhibitors - pharmacology
Fundamental and applied biological sciences. Psychology
Glucose - pharmacology
Humans
Medical sciences
Membrane Proteins
Morpholines - pharmacology
NF-kappa B - metabolism
Phosphatidylinositol 3-Kinases - antagonists & inhibitors
Phosphatidylinositol 3-Kinases - metabolism
Prostaglandin-Endoperoxide Synthases - metabolism
Protein-Serine-Threonine Kinases - metabolism
Proto-Oncogene Proteins - metabolism
Proto-Oncogene Proteins c-akt
Reactive Oxygen Species - metabolism
Signal Transduction - drug effects
Signal Transduction - physiology
Umbilical Veins - cytology
Vertebrates: cardiovascular system
title High Glucose Induces Human Endothelial Cell Apoptosis Through a Phosphoinositide 3-Kinase–Regulated Cyclooxygenase-2 Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Glucose%20Induces%20Human%20Endothelial%20Cell%20Apoptosis%20Through%20a%20Phosphoinositide%203-Kinase%E2%80%93Regulated%20Cyclooxygenase-2%20Pathway&rft.jtitle=Arteriosclerosis,%20thrombosis,%20and%20vascular%20biology&rft.au=Sheu,%20Meei%20Ling&rft.date=2005-03&rft.volume=25&rft.issue=3&rft.spage=539&rft.epage=545&rft.pages=539-545&rft.issn=1079-5642&rft.eissn=1524-4636&rft.coden=ATVBFA&rft_id=info:doi/10.1161/01.ATV.0000155462.24263.e4&rft_dat=%3Cproquest_cross%3E925972621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204321721&rft_id=info:pmid/15653566&rfr_iscdi=true