Self-Assembling Sequence-Adaptive Peptide Nucleic Acids

Several classes of nucleic acid analogs have been reported, but no synthetic informational polymer has yet proven responsive to selection pressures under enzyme-free conditions. Here, we introduce an oligomer family that efficiently self-assembles by means of reversible covalent anchoring of nucleob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2009-07, Vol.325 (5936), p.73-77
Hauptverfasser: Ura, Yasuyuki, Beierle, John M, Leman, Luke J, Orgel, Leslie E, Ghadiri, M. Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue 5936
container_start_page 73
container_title Science (American Association for the Advancement of Science)
container_volume 325
creator Ura, Yasuyuki
Beierle, John M
Leman, Luke J
Orgel, Leslie E
Ghadiri, M. Reza
description Several classes of nucleic acid analogs have been reported, but no synthetic informational polymer has yet proven responsive to selection pressures under enzyme-free conditions. Here, we introduce an oligomer family that efficiently self-assembles by means of reversible covalent anchoring of nucleobase recognition units onto simple oligo-dipeptide backbones [thioester peptide nucleic acids (tPNAs)] and undergoes dynamic sequence modification in response to changing templates in solution. The oligomers specifically self-pair with complementary tPNA strands and cross-pair with RNA and DNA in Watson-Crick fashion. Thus, tPNA combines base-pairing interactions with the side-chain functionalities of typical peptides and proteins. These characteristics might prove advantageous for the design or selection of catalytic constructs or biomaterials that are capable of dynamic sequence repair and adaptation.
doi_str_mv 10.1126/science.1174577
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67455717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20536555</jstor_id><sourcerecordid>20536555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-9324bca975cf23c881a981a812a6cd7e28d768451dad9d4e402048c4cd90fe3c3</originalsourceid><addsrcrecordid>eNqFkc1LHEEQxRsxxI3J2ZO65JDbaPVH9cdxWTQJSBQ2npve7hqZZXZnnd4R_O9t2UHBi4eiKN6vHlU8xk44XHAu9GWODW0ilcEoNOaATTg4rJwAecgmAFJXFgwesW85rwCK5uRXdsQdCnDgJswsqK2rWc60XrbN5mG6oMfh1bKapbDdNU80vaPSE03_DbGlJk5nsUn5O_tShzbTj7Efs_vrq__zP9XN7e-_89lNFVHgrnJSqGUMzmCshYzW8uBKWS6CjsmQsMloq5CnkFxSpECAslHF5KAmGeUx-7X33fZdOSzv_LrJkdo2bKgbstflbzTcfApKLYRQ8nNQgLZSO13Anx_AVTf0m_KtF1yic6h4gS73UOy7nHuq_bZv1qF_9hz8a0R-jMiPEZWNs9F2WK4pvfNjJgU43QOrvOv6N10ASo2IRT_f63XofHjom-zvFwK4BK4R0IJ8AWnMnhc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213599541</pqid></control><display><type>article</type><title>Self-Assembling Sequence-Adaptive Peptide Nucleic Acids</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Ura, Yasuyuki ; Beierle, John M ; Leman, Luke J ; Orgel, Leslie E ; Ghadiri, M. Reza</creator><creatorcontrib>Ura, Yasuyuki ; Beierle, John M ; Leman, Luke J ; Orgel, Leslie E ; Ghadiri, M. Reza</creatorcontrib><description>Several classes of nucleic acid analogs have been reported, but no synthetic informational polymer has yet proven responsive to selection pressures under enzyme-free conditions. Here, we introduce an oligomer family that efficiently self-assembles by means of reversible covalent anchoring of nucleobase recognition units onto simple oligo-dipeptide backbones [thioester peptide nucleic acids (tPNAs)] and undergoes dynamic sequence modification in response to changing templates in solution. The oligomers specifically self-pair with complementary tPNA strands and cross-pair with RNA and DNA in Watson-Crick fashion. Thus, tPNA combines base-pairing interactions with the side-chain functionalities of typical peptides and proteins. These characteristics might prove advantageous for the design or selection of catalytic constructs or biomaterials that are capable of dynamic sequence repair and adaptation.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1174577</identifier><identifier>PMID: 19520909</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Adenine - chemistry ; Amino acids ; Amino Acids - chemistry ; Base Pairing ; Base Sequence ; Biochemistry ; Biotinylation ; Deoxyribonucleic acid ; Dipeptides - chemistry ; DNA ; DNA - chemistry ; Melting ; Models, Molecular ; Molecular biology ; Molecular Structure ; Monomers ; Nucleic Acid Conformation ; Nucleic acids ; Nucleobases ; Oligomers ; Oligonucleotides ; Oligonucleotides - chemistry ; Peptide nucleic acids ; Peptide Nucleic Acids - chemistry ; Peptides ; Peptides - chemistry ; Ribonucleic acid ; RNA ; RNA - chemistry</subject><ispartof>Science (American Association for the Advancement of Science), 2009-07, Vol.325 (5936), p.73-77</ispartof><rights>Copyright 2009 American Association for the Advancement of Science</rights><rights>Copyright © 2009, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-9324bca975cf23c881a981a812a6cd7e28d768451dad9d4e402048c4cd90fe3c3</citedby><cites>FETCH-LOGICAL-c525t-9324bca975cf23c881a981a812a6cd7e28d768451dad9d4e402048c4cd90fe3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20536555$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20536555$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19520909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ura, Yasuyuki</creatorcontrib><creatorcontrib>Beierle, John M</creatorcontrib><creatorcontrib>Leman, Luke J</creatorcontrib><creatorcontrib>Orgel, Leslie E</creatorcontrib><creatorcontrib>Ghadiri, M. Reza</creatorcontrib><title>Self-Assembling Sequence-Adaptive Peptide Nucleic Acids</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Several classes of nucleic acid analogs have been reported, but no synthetic informational polymer has yet proven responsive to selection pressures under enzyme-free conditions. Here, we introduce an oligomer family that efficiently self-assembles by means of reversible covalent anchoring of nucleobase recognition units onto simple oligo-dipeptide backbones [thioester peptide nucleic acids (tPNAs)] and undergoes dynamic sequence modification in response to changing templates in solution. The oligomers specifically self-pair with complementary tPNA strands and cross-pair with RNA and DNA in Watson-Crick fashion. Thus, tPNA combines base-pairing interactions with the side-chain functionalities of typical peptides and proteins. These characteristics might prove advantageous for the design or selection of catalytic constructs or biomaterials that are capable of dynamic sequence repair and adaptation.</description><subject>Adenine - chemistry</subject><subject>Amino acids</subject><subject>Amino Acids - chemistry</subject><subject>Base Pairing</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biotinylation</subject><subject>Deoxyribonucleic acid</subject><subject>Dipeptides - chemistry</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Melting</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Structure</subject><subject>Monomers</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic acids</subject><subject>Nucleobases</subject><subject>Oligomers</subject><subject>Oligonucleotides</subject><subject>Oligonucleotides - chemistry</subject><subject>Peptide nucleic acids</subject><subject>Peptide Nucleic Acids - chemistry</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - chemistry</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1LHEEQxRsxxI3J2ZO65JDbaPVH9cdxWTQJSBQ2npve7hqZZXZnnd4R_O9t2UHBi4eiKN6vHlU8xk44XHAu9GWODW0ilcEoNOaATTg4rJwAecgmAFJXFgwesW85rwCK5uRXdsQdCnDgJswsqK2rWc60XrbN5mG6oMfh1bKapbDdNU80vaPSE03_DbGlJk5nsUn5O_tShzbTj7Efs_vrq__zP9XN7e-_89lNFVHgrnJSqGUMzmCshYzW8uBKWS6CjsmQsMloq5CnkFxSpECAslHF5KAmGeUx-7X33fZdOSzv_LrJkdo2bKgbstflbzTcfApKLYRQ8nNQgLZSO13Anx_AVTf0m_KtF1yic6h4gS73UOy7nHuq_bZv1qF_9hz8a0R-jMiPEZWNs9F2WK4pvfNjJgU43QOrvOv6N10ASo2IRT_f63XofHjom-zvFwK4BK4R0IJ8AWnMnhc</recordid><startdate>20090703</startdate><enddate>20090703</enddate><creator>Ura, Yasuyuki</creator><creator>Beierle, John M</creator><creator>Leman, Luke J</creator><creator>Orgel, Leslie E</creator><creator>Ghadiri, M. Reza</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090703</creationdate><title>Self-Assembling Sequence-Adaptive Peptide Nucleic Acids</title><author>Ura, Yasuyuki ; Beierle, John M ; Leman, Luke J ; Orgel, Leslie E ; Ghadiri, M. Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-9324bca975cf23c881a981a812a6cd7e28d768451dad9d4e402048c4cd90fe3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adenine - chemistry</topic><topic>Amino acids</topic><topic>Amino Acids - chemistry</topic><topic>Base Pairing</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biotinylation</topic><topic>Deoxyribonucleic acid</topic><topic>Dipeptides - chemistry</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Melting</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Structure</topic><topic>Monomers</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic acids</topic><topic>Nucleobases</topic><topic>Oligomers</topic><topic>Oligonucleotides</topic><topic>Oligonucleotides - chemistry</topic><topic>Peptide nucleic acids</topic><topic>Peptide Nucleic Acids - chemistry</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ura, Yasuyuki</creatorcontrib><creatorcontrib>Beierle, John M</creatorcontrib><creatorcontrib>Leman, Luke J</creatorcontrib><creatorcontrib>Orgel, Leslie E</creatorcontrib><creatorcontrib>Ghadiri, M. Reza</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ura, Yasuyuki</au><au>Beierle, John M</au><au>Leman, Luke J</au><au>Orgel, Leslie E</au><au>Ghadiri, M. Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Assembling Sequence-Adaptive Peptide Nucleic Acids</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2009-07-03</date><risdate>2009</risdate><volume>325</volume><issue>5936</issue><spage>73</spage><epage>77</epage><pages>73-77</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Several classes of nucleic acid analogs have been reported, but no synthetic informational polymer has yet proven responsive to selection pressures under enzyme-free conditions. Here, we introduce an oligomer family that efficiently self-assembles by means of reversible covalent anchoring of nucleobase recognition units onto simple oligo-dipeptide backbones [thioester peptide nucleic acids (tPNAs)] and undergoes dynamic sequence modification in response to changing templates in solution. The oligomers specifically self-pair with complementary tPNA strands and cross-pair with RNA and DNA in Watson-Crick fashion. Thus, tPNA combines base-pairing interactions with the side-chain functionalities of typical peptides and proteins. These characteristics might prove advantageous for the design or selection of catalytic constructs or biomaterials that are capable of dynamic sequence repair and adaptation.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>19520909</pmid><doi>10.1126/science.1174577</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2009-07, Vol.325 (5936), p.73-77
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_67455717
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Adenine - chemistry
Amino acids
Amino Acids - chemistry
Base Pairing
Base Sequence
Biochemistry
Biotinylation
Deoxyribonucleic acid
Dipeptides - chemistry
DNA
DNA - chemistry
Melting
Models, Molecular
Molecular biology
Molecular Structure
Monomers
Nucleic Acid Conformation
Nucleic acids
Nucleobases
Oligomers
Oligonucleotides
Oligonucleotides - chemistry
Peptide nucleic acids
Peptide Nucleic Acids - chemistry
Peptides
Peptides - chemistry
Ribonucleic acid
RNA
RNA - chemistry
title Self-Assembling Sequence-Adaptive Peptide Nucleic Acids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Assembling%20Sequence-Adaptive%20Peptide%20Nucleic%20Acids&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ura,%20Yasuyuki&rft.date=2009-07-03&rft.volume=325&rft.issue=5936&rft.spage=73&rft.epage=77&rft.pages=73-77&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1174577&rft_dat=%3Cjstor_proqu%3E20536555%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213599541&rft_id=info:pmid/19520909&rft_jstor_id=20536555&rfr_iscdi=true