Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers

A high-density genetic map with a number of anchor markers has been created to be used as a tool to dissect genetic variation in rose. Linkage maps for the diploid 94/1 population consisting of 88 individuals were constructed using a total of 520 molecular markers including AFLP, SSR, PK, RGA, RFLP,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2005-02, Vol.110 (4), p.766-777
Hauptverfasser: Yan, Z, Denneboom, C, Hattendorf, A, Dolstra, O, Debener, T, Stam, P, Visser, P.B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 777
container_issue 4
container_start_page 766
container_title Theoretical and applied genetics
container_volume 110
creator Yan, Z
Denneboom, C
Hattendorf, A
Dolstra, O
Debener, T
Stam, P
Visser, P.B
description A high-density genetic map with a number of anchor markers has been created to be used as a tool to dissect genetic variation in rose. Linkage maps for the diploid 94/1 population consisting of 88 individuals were constructed using a total of 520 molecular markers including AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Seven linkage groups, putatively corresponding to the seven haploid rose chromosomes, were identified for each parent, spanning 487 cM and 490 cM, respectively. The average length of 70 cM may cover more than 90% of the rose genome. An integrated map was constructed by incorporating the homologous parental linkage groups, resulting in seven linkage groups with a total length of 545 cM. The present linkage map is currently the most advanced map in rose with regard to marker density, genome coverage and with robust markers, giving good perspectives for QTL mapping and marker-assisted breeding in rose. The SSR markers, together with RFLP markers, provide good anchor points for future map alignment studies in rose and related species. Codominantly scored AFLP markers were helpful in the integration of the parental maps.
doi_str_mv 10.1007/s00122-004-1903-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67449451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220649951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-78a09c49cbfbfde0ff8a961216c266a14882ee70e42232259a4bfef471eda1f83</originalsourceid><addsrcrecordid>eNqFkU9r20AQxZfS0jhpP0AvrSikJ6udGe0f6WhMkpYaGuzmvKzlXUeprHV3JUq-fVbIEOgllxmY_b23zDzGPiB8RQD1LQIgUQ7Ac6ygyOUrNkNeUE7E6TWbpQfIhRJ0xs5jfAAAElC8ZWcopCJSasb2S9_FPgx13_gu8y4zXdZ0vd0H09tddjDHcRh8tNm_pr_PFter23m22azn2e3Peba-WaQyzZaLdVInjQ_He9_6fVObNjmEPzbEd-yNM22070_9gt1dX_1efs9Xv25-LBervOaIfa5KA1XNq3rrtm5nwbnSVBIJZU1SGuRlSdYqsJyoIBKV4VtnHVdodwZdWVywL5PvMfi_g429PjSxtm1rOuuHqKXivOICXwRRyYJL4gn8_B_44IfQpSV0SVCRLMT4LU5QnU4Vg3X6GJq0-qNG0GNWespKp0j0mJWWSfPxZDxsD3b3rDiFk4DLE2BiOqULpqub-MxJIQXBaPRp4pzx2uxDYu42BFgAgpAp8-IJpeShWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>820926358</pqid></control><display><type>article</type><title>Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Yan, Z ; Denneboom, C ; Hattendorf, A ; Dolstra, O ; Debener, T ; Stam, P ; Visser, P.B</creator><creatorcontrib>Yan, Z ; Denneboom, C ; Hattendorf, A ; Dolstra, O ; Debener, T ; Stam, P ; Visser, P.B</creatorcontrib><description>A high-density genetic map with a number of anchor markers has been created to be used as a tool to dissect genetic variation in rose. Linkage maps for the diploid 94/1 population consisting of 88 individuals were constructed using a total of 520 molecular markers including AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Seven linkage groups, putatively corresponding to the seven haploid rose chromosomes, were identified for each parent, spanning 487 cM and 490 cM, respectively. The average length of 70 cM may cover more than 90% of the rose genome. An integrated map was constructed by incorporating the homologous parental linkage groups, resulting in seven linkage groups with a total length of 545 cM. The present linkage map is currently the most advanced map in rose with regard to marker density, genome coverage and with robust markers, giving good perspectives for QTL mapping and marker-assisted breeding in rose. The SSR markers, together with RFLP markers, provide good anchor points for future map alignment studies in rose and related species. Codominantly scored AFLP markers were helpful in the integration of the parental maps.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-004-1903-6</identifier><identifier>PMID: 15672277</identifier><identifier>CODEN: THAGA6</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>amplified fragment length polymorphism ; Biological and medical sciences ; Chromosome Mapping ; Chromosomes, Plant ; Classical genetics, quantitative genetics, hybrids ; Fundamental and applied biological sciences. Psychology ; Genetic Markers ; Genetics ; Genetics of eukaryotes. Biological and molecular evolution ; Genome, Plant ; Genomics ; linkage groups ; microsatellite repeats ; Minisatellite Repeats ; morphological markers ; Nucleic Acid Amplification Techniques ; Polymorphism, Restriction Fragment Length ; Protein Kinases - genetics ; Pteridophyta, spermatophyta ; resistance gene analogs ; restriction fragment length polymorphism ; Rosa ; Rosa - genetics ; sequence characterized amplified region ; Vegetals</subject><ispartof>Theoretical and applied genetics, 2005-02, Vol.110 (4), p.766-777</ispartof><rights>2005 INIST-CNRS</rights><rights>Springer-Verlag 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-78a09c49cbfbfde0ff8a961216c266a14882ee70e42232259a4bfef471eda1f83</citedby><cites>FETCH-LOGICAL-c411t-78a09c49cbfbfde0ff8a961216c266a14882ee70e42232259a4bfef471eda1f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16565206$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15672277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Z</creatorcontrib><creatorcontrib>Denneboom, C</creatorcontrib><creatorcontrib>Hattendorf, A</creatorcontrib><creatorcontrib>Dolstra, O</creatorcontrib><creatorcontrib>Debener, T</creatorcontrib><creatorcontrib>Stam, P</creatorcontrib><creatorcontrib>Visser, P.B</creatorcontrib><title>Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><description>A high-density genetic map with a number of anchor markers has been created to be used as a tool to dissect genetic variation in rose. Linkage maps for the diploid 94/1 population consisting of 88 individuals were constructed using a total of 520 molecular markers including AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Seven linkage groups, putatively corresponding to the seven haploid rose chromosomes, were identified for each parent, spanning 487 cM and 490 cM, respectively. The average length of 70 cM may cover more than 90% of the rose genome. An integrated map was constructed by incorporating the homologous parental linkage groups, resulting in seven linkage groups with a total length of 545 cM. The present linkage map is currently the most advanced map in rose with regard to marker density, genome coverage and with robust markers, giving good perspectives for QTL mapping and marker-assisted breeding in rose. The SSR markers, together with RFLP markers, provide good anchor points for future map alignment studies in rose and related species. Codominantly scored AFLP markers were helpful in the integration of the parental maps.</description><subject>amplified fragment length polymorphism</subject><subject>Biological and medical sciences</subject><subject>Chromosome Mapping</subject><subject>Chromosomes, Plant</subject><subject>Classical genetics, quantitative genetics, hybrids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic Markers</subject><subject>Genetics</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genome, Plant</subject><subject>Genomics</subject><subject>linkage groups</subject><subject>microsatellite repeats</subject><subject>Minisatellite Repeats</subject><subject>morphological markers</subject><subject>Nucleic Acid Amplification Techniques</subject><subject>Polymorphism, Restriction Fragment Length</subject><subject>Protein Kinases - genetics</subject><subject>Pteridophyta, spermatophyta</subject><subject>resistance gene analogs</subject><subject>restriction fragment length polymorphism</subject><subject>Rosa</subject><subject>Rosa - genetics</subject><subject>sequence characterized amplified region</subject><subject>Vegetals</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU9r20AQxZfS0jhpP0AvrSikJ6udGe0f6WhMkpYaGuzmvKzlXUeprHV3JUq-fVbIEOgllxmY_b23zDzGPiB8RQD1LQIgUQ7Ac6ygyOUrNkNeUE7E6TWbpQfIhRJ0xs5jfAAAElC8ZWcopCJSasb2S9_FPgx13_gu8y4zXdZ0vd0H09tddjDHcRh8tNm_pr_PFter23m22azn2e3Peba-WaQyzZaLdVInjQ_He9_6fVObNjmEPzbEd-yNM22070_9gt1dX_1efs9Xv25-LBervOaIfa5KA1XNq3rrtm5nwbnSVBIJZU1SGuRlSdYqsJyoIBKV4VtnHVdodwZdWVywL5PvMfi_g429PjSxtm1rOuuHqKXivOICXwRRyYJL4gn8_B_44IfQpSV0SVCRLMT4LU5QnU4Vg3X6GJq0-qNG0GNWespKp0j0mJWWSfPxZDxsD3b3rDiFk4DLE2BiOqULpqub-MxJIQXBaPRp4pzx2uxDYu42BFgAgpAp8-IJpeShWg</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Yan, Z</creator><creator>Denneboom, C</creator><creator>Hattendorf, A</creator><creator>Dolstra, O</creator><creator>Debener, T</creator><creator>Stam, P</creator><creator>Visser, P.B</creator><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20050201</creationdate><title>Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers</title><author>Yan, Z ; Denneboom, C ; Hattendorf, A ; Dolstra, O ; Debener, T ; Stam, P ; Visser, P.B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-78a09c49cbfbfde0ff8a961216c266a14882ee70e42232259a4bfef471eda1f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>amplified fragment length polymorphism</topic><topic>Biological and medical sciences</topic><topic>Chromosome Mapping</topic><topic>Chromosomes, Plant</topic><topic>Classical genetics, quantitative genetics, hybrids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic Markers</topic><topic>Genetics</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genome, Plant</topic><topic>Genomics</topic><topic>linkage groups</topic><topic>microsatellite repeats</topic><topic>Minisatellite Repeats</topic><topic>morphological markers</topic><topic>Nucleic Acid Amplification Techniques</topic><topic>Polymorphism, Restriction Fragment Length</topic><topic>Protein Kinases - genetics</topic><topic>Pteridophyta, spermatophyta</topic><topic>resistance gene analogs</topic><topic>restriction fragment length polymorphism</topic><topic>Rosa</topic><topic>Rosa - genetics</topic><topic>sequence characterized amplified region</topic><topic>Vegetals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Z</creatorcontrib><creatorcontrib>Denneboom, C</creatorcontrib><creatorcontrib>Hattendorf, A</creatorcontrib><creatorcontrib>Dolstra, O</creatorcontrib><creatorcontrib>Debener, T</creatorcontrib><creatorcontrib>Stam, P</creatorcontrib><creatorcontrib>Visser, P.B</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Z</au><au>Denneboom, C</au><au>Hattendorf, A</au><au>Dolstra, O</au><au>Debener, T</au><au>Stam, P</au><au>Visser, P.B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers</atitle><jtitle>Theoretical and applied genetics</jtitle><addtitle>Theor Appl Genet</addtitle><date>2005-02-01</date><risdate>2005</risdate><volume>110</volume><issue>4</issue><spage>766</spage><epage>777</epage><pages>766-777</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><coden>THAGA6</coden><abstract>A high-density genetic map with a number of anchor markers has been created to be used as a tool to dissect genetic variation in rose. Linkage maps for the diploid 94/1 population consisting of 88 individuals were constructed using a total of 520 molecular markers including AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Seven linkage groups, putatively corresponding to the seven haploid rose chromosomes, were identified for each parent, spanning 487 cM and 490 cM, respectively. The average length of 70 cM may cover more than 90% of the rose genome. An integrated map was constructed by incorporating the homologous parental linkage groups, resulting in seven linkage groups with a total length of 545 cM. The present linkage map is currently the most advanced map in rose with regard to marker density, genome coverage and with robust markers, giving good perspectives for QTL mapping and marker-assisted breeding in rose. The SSR markers, together with RFLP markers, provide good anchor points for future map alignment studies in rose and related species. Codominantly scored AFLP markers were helpful in the integration of the parental maps.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><pmid>15672277</pmid><doi>10.1007/s00122-004-1903-6</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2005-02, Vol.110 (4), p.766-777
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_67449451
source MEDLINE; Springer Nature - Complete Springer Journals
subjects amplified fragment length polymorphism
Biological and medical sciences
Chromosome Mapping
Chromosomes, Plant
Classical genetics, quantitative genetics, hybrids
Fundamental and applied biological sciences. Psychology
Genetic Markers
Genetics
Genetics of eukaryotes. Biological and molecular evolution
Genome, Plant
Genomics
linkage groups
microsatellite repeats
Minisatellite Repeats
morphological markers
Nucleic Acid Amplification Techniques
Polymorphism, Restriction Fragment Length
Protein Kinases - genetics
Pteridophyta, spermatophyta
resistance gene analogs
restriction fragment length polymorphism
Rosa
Rosa - genetics
sequence characterized amplified region
Vegetals
title Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20an%20integrated%20map%20of%20rose%20with%20AFLP,%20SSR,%20PK,%20RGA,%20RFLP,%20SCAR%20and%20morphological%20markers&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Yan,%20Z&rft.date=2005-02-01&rft.volume=110&rft.issue=4&rft.spage=766&rft.epage=777&rft.pages=766-777&rft.issn=0040-5752&rft.eissn=1432-2242&rft.coden=THAGA6&rft_id=info:doi/10.1007/s00122-004-1903-6&rft_dat=%3Cproquest_cross%3E2220649951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=820926358&rft_id=info:pmid/15672277&rfr_iscdi=true