Generating Genetic Risk Scores from Intermediate Phenotypes for Use in Association Studies of Clinically Significant Endpoints
Summary While previous results of genetic association studies for common, complex diseases (eg., coronary artery disease, CAD) have been disappointing, examination of multiple related genes within a physiologic pathway may provide improved resolution. This paper describes a method of calculating a g...
Gespeichert in:
Veröffentlicht in: | Annals of human genetics 2005-03, Vol.69 (2), p.176-186 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | 2 |
container_start_page | 176 |
container_title | Annals of human genetics |
container_volume | 69 |
creator | Horne, B. D. Anderson, J. L. Carlquist, J. F. Muhlestein, J. B. Renlund, D. G. Bair, T. L. Pearson, R. R. Camp, N. J. |
description | Summary
While previous results of genetic association studies for common, complex diseases (eg., coronary artery disease, CAD) have been disappointing, examination of multiple related genes within a physiologic pathway may provide improved resolution. This paper describes a method of calculating a genetic risk score (GRS) for a clinical endpoint by integrating data from many candidate genes and multiple intermediate phenotypes (IPs). First, the association of all single nucleotide polymorphisms (SNPs) to an IP is determined and regression β‐coefficients are used to calculate an IP‐specific GRS for each individual, repeating this analysis for every IP. Next, the IPs are assessed by a second regression as predictors of the clinical endpoint. Each IP's individual GRS is then weighted by the regression β‐coefficients from the second step, creating a single, composite GRS. As an example, 3,172 patients undergoing coronary angiography were evaluated for 3 SNPs from the cholesterol metabolism pathway. Although these data provide only a preliminary example, the GRS method detected significant differences in CAD by GRS group, whereas separate genotypes did not. These results illustrate the potential of the GRS methodology for multigenic risk evaluation and suggest that such approaches deserve further examination in common, complex diseases such as CAD. |
doi_str_mv | 10.1046/j.1469-1809.2005.00155.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67444765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67444765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3085-4a0dcfb73ca25fea1c6568b499d00a68f3e969327afb17f13589f9777f5559b83</originalsourceid><addsrcrecordid>eNqNkcFuEzEQhi0EomnhFZBP3HYZr-21LXGJopJWqgQi9Gx5vXZx2NjB3qjNhWdnt4ngCKeZ0f_NWPKHECZQE2Dth21NWKsqIkHVDQCvAQjn9dMLtPgTvEQLAKAVkwAX6LKU7QQ1ktHX6IJw0UCj1AL9WrvoshlDfMBzOwaLv4byA29syq5gn9MO38bR5Z3rgxkd_vLdxTQe93OYMr4vDoeIl6UkO-UhRbwZD32Y4uTxaggxWDMMR7wJDzH4aYgjvo79PoU4ljfolTdDcW_P9Qrdf7r-trqp7j6vb1fLu8pSkLxiBnrrO0Gtabh3htiWt7JjSvUAppWeOtUq2gjjOyI8oVwqr4QQnnOuOkmv0PvT3X1OPw-ujHoXinXDYKJLh6JbwRgTLf8nSBRrQDAygfIE2pxKyc7rfQ47k4-agJ4l6a2eXejZhZ4l6WdJ-mlafXd-49BNv_p38WxlAj6egMcwuON_H9bLm_XU0N-SG6GJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19420741</pqid></control><display><type>article</type><title>Generating Genetic Risk Scores from Intermediate Phenotypes for Use in Association Studies of Clinically Significant Endpoints</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><creator>Horne, B. D. ; Anderson, J. L. ; Carlquist, J. F. ; Muhlestein, J. B. ; Renlund, D. G. ; Bair, T. L. ; Pearson, R. R. ; Camp, N. J.</creator><creatorcontrib>Horne, B. D. ; Anderson, J. L. ; Carlquist, J. F. ; Muhlestein, J. B. ; Renlund, D. G. ; Bair, T. L. ; Pearson, R. R. ; Camp, N. J.</creatorcontrib><description>Summary
While previous results of genetic association studies for common, complex diseases (eg., coronary artery disease, CAD) have been disappointing, examination of multiple related genes within a physiologic pathway may provide improved resolution. This paper describes a method of calculating a genetic risk score (GRS) for a clinical endpoint by integrating data from many candidate genes and multiple intermediate phenotypes (IPs). First, the association of all single nucleotide polymorphisms (SNPs) to an IP is determined and regression β‐coefficients are used to calculate an IP‐specific GRS for each individual, repeating this analysis for every IP. Next, the IPs are assessed by a second regression as predictors of the clinical endpoint. Each IP's individual GRS is then weighted by the regression β‐coefficients from the second step, creating a single, composite GRS. As an example, 3,172 patients undergoing coronary angiography were evaluated for 3 SNPs from the cholesterol metabolism pathway. Although these data provide only a preliminary example, the GRS method detected significant differences in CAD by GRS group, whereas separate genotypes did not. These results illustrate the potential of the GRS methodology for multigenic risk evaluation and suggest that such approaches deserve further examination in common, complex diseases such as CAD.</description><identifier>ISSN: 0003-4800</identifier><identifier>EISSN: 1469-1809</identifier><identifier>DOI: 10.1046/j.1469-1809.2005.00155.x</identifier><identifier>PMID: 15720299</identifier><language>eng</language><publisher>350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK: Blackwell Science Ltd</publisher><subject>Coronary Disease - genetics ; Female ; Genetic Burden ; Genetic Predisposition to Disease ; Humans ; Male ; Phenotype ; Polygenic Traits ; Polymorphism, Single Nucleotide ; Risk Assessment</subject><ispartof>Annals of human genetics, 2005-03, Vol.69 (2), p.176-186</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3085-4a0dcfb73ca25fea1c6568b499d00a68f3e969327afb17f13589f9777f5559b83</citedby><cites>FETCH-LOGICAL-c3085-4a0dcfb73ca25fea1c6568b499d00a68f3e969327afb17f13589f9777f5559b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1469-1809.2005.00155.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1469-1809.2005.00155.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15720299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horne, B. D.</creatorcontrib><creatorcontrib>Anderson, J. L.</creatorcontrib><creatorcontrib>Carlquist, J. F.</creatorcontrib><creatorcontrib>Muhlestein, J. B.</creatorcontrib><creatorcontrib>Renlund, D. G.</creatorcontrib><creatorcontrib>Bair, T. L.</creatorcontrib><creatorcontrib>Pearson, R. R.</creatorcontrib><creatorcontrib>Camp, N. J.</creatorcontrib><title>Generating Genetic Risk Scores from Intermediate Phenotypes for Use in Association Studies of Clinically Significant Endpoints</title><title>Annals of human genetics</title><addtitle>Ann Hum Genet</addtitle><description>Summary
While previous results of genetic association studies for common, complex diseases (eg., coronary artery disease, CAD) have been disappointing, examination of multiple related genes within a physiologic pathway may provide improved resolution. This paper describes a method of calculating a genetic risk score (GRS) for a clinical endpoint by integrating data from many candidate genes and multiple intermediate phenotypes (IPs). First, the association of all single nucleotide polymorphisms (SNPs) to an IP is determined and regression β‐coefficients are used to calculate an IP‐specific GRS for each individual, repeating this analysis for every IP. Next, the IPs are assessed by a second regression as predictors of the clinical endpoint. Each IP's individual GRS is then weighted by the regression β‐coefficients from the second step, creating a single, composite GRS. As an example, 3,172 patients undergoing coronary angiography were evaluated for 3 SNPs from the cholesterol metabolism pathway. Although these data provide only a preliminary example, the GRS method detected significant differences in CAD by GRS group, whereas separate genotypes did not. These results illustrate the potential of the GRS methodology for multigenic risk evaluation and suggest that such approaches deserve further examination in common, complex diseases such as CAD.</description><subject>Coronary Disease - genetics</subject><subject>Female</subject><subject>Genetic Burden</subject><subject>Genetic Predisposition to Disease</subject><subject>Humans</subject><subject>Male</subject><subject>Phenotype</subject><subject>Polygenic Traits</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Risk Assessment</subject><issn>0003-4800</issn><issn>1469-1809</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFuEzEQhi0EomnhFZBP3HYZr-21LXGJopJWqgQi9Gx5vXZx2NjB3qjNhWdnt4ngCKeZ0f_NWPKHECZQE2Dth21NWKsqIkHVDQCvAQjn9dMLtPgTvEQLAKAVkwAX6LKU7QQ1ktHX6IJw0UCj1AL9WrvoshlDfMBzOwaLv4byA29syq5gn9MO38bR5Z3rgxkd_vLdxTQe93OYMr4vDoeIl6UkO-UhRbwZD32Y4uTxaggxWDMMR7wJDzH4aYgjvo79PoU4ljfolTdDcW_P9Qrdf7r-trqp7j6vb1fLu8pSkLxiBnrrO0Gtabh3htiWt7JjSvUAppWeOtUq2gjjOyI8oVwqr4QQnnOuOkmv0PvT3X1OPw-ujHoXinXDYKJLh6JbwRgTLf8nSBRrQDAygfIE2pxKyc7rfQ47k4-agJ4l6a2eXejZhZ4l6WdJ-mlafXd-49BNv_p38WxlAj6egMcwuON_H9bLm_XU0N-SG6GJ</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Horne, B. D.</creator><creator>Anderson, J. L.</creator><creator>Carlquist, J. F.</creator><creator>Muhlestein, J. B.</creator><creator>Renlund, D. G.</creator><creator>Bair, T. L.</creator><creator>Pearson, R. R.</creator><creator>Camp, N. J.</creator><general>Blackwell Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200503</creationdate><title>Generating Genetic Risk Scores from Intermediate Phenotypes for Use in Association Studies of Clinically Significant Endpoints</title><author>Horne, B. D. ; Anderson, J. L. ; Carlquist, J. F. ; Muhlestein, J. B. ; Renlund, D. G. ; Bair, T. L. ; Pearson, R. R. ; Camp, N. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3085-4a0dcfb73ca25fea1c6568b499d00a68f3e969327afb17f13589f9777f5559b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Coronary Disease - genetics</topic><topic>Female</topic><topic>Genetic Burden</topic><topic>Genetic Predisposition to Disease</topic><topic>Humans</topic><topic>Male</topic><topic>Phenotype</topic><topic>Polygenic Traits</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Risk Assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horne, B. D.</creatorcontrib><creatorcontrib>Anderson, J. L.</creatorcontrib><creatorcontrib>Carlquist, J. F.</creatorcontrib><creatorcontrib>Muhlestein, J. B.</creatorcontrib><creatorcontrib>Renlund, D. G.</creatorcontrib><creatorcontrib>Bair, T. L.</creatorcontrib><creatorcontrib>Pearson, R. R.</creatorcontrib><creatorcontrib>Camp, N. J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horne, B. D.</au><au>Anderson, J. L.</au><au>Carlquist, J. F.</au><au>Muhlestein, J. B.</au><au>Renlund, D. G.</au><au>Bair, T. L.</au><au>Pearson, R. R.</au><au>Camp, N. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating Genetic Risk Scores from Intermediate Phenotypes for Use in Association Studies of Clinically Significant Endpoints</atitle><jtitle>Annals of human genetics</jtitle><addtitle>Ann Hum Genet</addtitle><date>2005-03</date><risdate>2005</risdate><volume>69</volume><issue>2</issue><spage>176</spage><epage>186</epage><pages>176-186</pages><issn>0003-4800</issn><eissn>1469-1809</eissn><abstract>Summary
While previous results of genetic association studies for common, complex diseases (eg., coronary artery disease, CAD) have been disappointing, examination of multiple related genes within a physiologic pathway may provide improved resolution. This paper describes a method of calculating a genetic risk score (GRS) for a clinical endpoint by integrating data from many candidate genes and multiple intermediate phenotypes (IPs). First, the association of all single nucleotide polymorphisms (SNPs) to an IP is determined and regression β‐coefficients are used to calculate an IP‐specific GRS for each individual, repeating this analysis for every IP. Next, the IPs are assessed by a second regression as predictors of the clinical endpoint. Each IP's individual GRS is then weighted by the regression β‐coefficients from the second step, creating a single, composite GRS. As an example, 3,172 patients undergoing coronary angiography were evaluated for 3 SNPs from the cholesterol metabolism pathway. Although these data provide only a preliminary example, the GRS method detected significant differences in CAD by GRS group, whereas separate genotypes did not. These results illustrate the potential of the GRS methodology for multigenic risk evaluation and suggest that such approaches deserve further examination in common, complex diseases such as CAD.</abstract><cop>350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK</cop><pub>Blackwell Science Ltd</pub><pmid>15720299</pmid><doi>10.1046/j.1469-1809.2005.00155.x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4800 |
ispartof | Annals of human genetics, 2005-03, Vol.69 (2), p.176-186 |
issn | 0003-4800 1469-1809 |
language | eng |
recordid | cdi_proquest_miscellaneous_67444765 |
source | MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; IngentaConnect Free/Open Access Journals |
subjects | Coronary Disease - genetics Female Genetic Burden Genetic Predisposition to Disease Humans Male Phenotype Polygenic Traits Polymorphism, Single Nucleotide Risk Assessment |
title | Generating Genetic Risk Scores from Intermediate Phenotypes for Use in Association Studies of Clinically Significant Endpoints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20Genetic%20Risk%20Scores%20from%20Intermediate%20Phenotypes%20for%20Use%20in%20Association%20Studies%20of%20Clinically%20Significant%20Endpoints&rft.jtitle=Annals%20of%20human%20genetics&rft.au=Horne,%20B.%20D.&rft.date=2005-03&rft.volume=69&rft.issue=2&rft.spage=176&rft.epage=186&rft.pages=176-186&rft.issn=0003-4800&rft.eissn=1469-1809&rft_id=info:doi/10.1046/j.1469-1809.2005.00155.x&rft_dat=%3Cproquest_cross%3E67444765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19420741&rft_id=info:pmid/15720299&rfr_iscdi=true |