Generating Genetic Risk Scores from Intermediate Phenotypes for Use in Association Studies of Clinically Significant Endpoints

Summary While previous results of genetic association studies for common, complex diseases (eg., coronary artery disease, CAD) have been disappointing, examination of multiple related genes within a physiologic pathway may provide improved resolution. This paper describes a method of calculating a g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of human genetics 2005-03, Vol.69 (2), p.176-186
Hauptverfasser: Horne, B. D., Anderson, J. L., Carlquist, J. F., Muhlestein, J. B., Renlund, D. G., Bair, T. L., Pearson, R. R., Camp, N. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue 2
container_start_page 176
container_title Annals of human genetics
container_volume 69
creator Horne, B. D.
Anderson, J. L.
Carlquist, J. F.
Muhlestein, J. B.
Renlund, D. G.
Bair, T. L.
Pearson, R. R.
Camp, N. J.
description Summary While previous results of genetic association studies for common, complex diseases (eg., coronary artery disease, CAD) have been disappointing, examination of multiple related genes within a physiologic pathway may provide improved resolution. This paper describes a method of calculating a genetic risk score (GRS) for a clinical endpoint by integrating data from many candidate genes and multiple intermediate phenotypes (IPs). First, the association of all single nucleotide polymorphisms (SNPs) to an IP is determined and regression β‐coefficients are used to calculate an IP‐specific GRS for each individual, repeating this analysis for every IP. Next, the IPs are assessed by a second regression as predictors of the clinical endpoint. Each IP's individual GRS is then weighted by the regression β‐coefficients from the second step, creating a single, composite GRS. As an example, 3,172 patients undergoing coronary angiography were evaluated for 3 SNPs from the cholesterol metabolism pathway. Although these data provide only a preliminary example, the GRS method detected significant differences in CAD by GRS group, whereas separate genotypes did not. These results illustrate the potential of the GRS methodology for multigenic risk evaluation and suggest that such approaches deserve further examination in common, complex diseases such as CAD.
doi_str_mv 10.1046/j.1469-1809.2005.00155.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67444765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67444765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3085-4a0dcfb73ca25fea1c6568b499d00a68f3e969327afb17f13589f9777f5559b83</originalsourceid><addsrcrecordid>eNqNkcFuEzEQhi0EomnhFZBP3HYZr-21LXGJopJWqgQi9Gx5vXZx2NjB3qjNhWdnt4ngCKeZ0f_NWPKHECZQE2Dth21NWKsqIkHVDQCvAQjn9dMLtPgTvEQLAKAVkwAX6LKU7QQ1ktHX6IJw0UCj1AL9WrvoshlDfMBzOwaLv4byA29syq5gn9MO38bR5Z3rgxkd_vLdxTQe93OYMr4vDoeIl6UkO-UhRbwZD32Y4uTxaggxWDMMR7wJDzH4aYgjvo79PoU4ljfolTdDcW_P9Qrdf7r-trqp7j6vb1fLu8pSkLxiBnrrO0Gtabh3htiWt7JjSvUAppWeOtUq2gjjOyI8oVwqr4QQnnOuOkmv0PvT3X1OPw-ujHoXinXDYKJLh6JbwRgTLf8nSBRrQDAygfIE2pxKyc7rfQ47k4-agJ4l6a2eXejZhZ4l6WdJ-mlafXd-49BNv_p38WxlAj6egMcwuON_H9bLm_XU0N-SG6GJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19420741</pqid></control><display><type>article</type><title>Generating Genetic Risk Scores from Intermediate Phenotypes for Use in Association Studies of Clinically Significant Endpoints</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><creator>Horne, B. D. ; Anderson, J. L. ; Carlquist, J. F. ; Muhlestein, J. B. ; Renlund, D. G. ; Bair, T. L. ; Pearson, R. R. ; Camp, N. J.</creator><creatorcontrib>Horne, B. D. ; Anderson, J. L. ; Carlquist, J. F. ; Muhlestein, J. B. ; Renlund, D. G. ; Bair, T. L. ; Pearson, R. R. ; Camp, N. J.</creatorcontrib><description>Summary While previous results of genetic association studies for common, complex diseases (eg., coronary artery disease, CAD) have been disappointing, examination of multiple related genes within a physiologic pathway may provide improved resolution. This paper describes a method of calculating a genetic risk score (GRS) for a clinical endpoint by integrating data from many candidate genes and multiple intermediate phenotypes (IPs). First, the association of all single nucleotide polymorphisms (SNPs) to an IP is determined and regression β‐coefficients are used to calculate an IP‐specific GRS for each individual, repeating this analysis for every IP. Next, the IPs are assessed by a second regression as predictors of the clinical endpoint. Each IP's individual GRS is then weighted by the regression β‐coefficients from the second step, creating a single, composite GRS. As an example, 3,172 patients undergoing coronary angiography were evaluated for 3 SNPs from the cholesterol metabolism pathway. Although these data provide only a preliminary example, the GRS method detected significant differences in CAD by GRS group, whereas separate genotypes did not. These results illustrate the potential of the GRS methodology for multigenic risk evaluation and suggest that such approaches deserve further examination in common, complex diseases such as CAD.</description><identifier>ISSN: 0003-4800</identifier><identifier>EISSN: 1469-1809</identifier><identifier>DOI: 10.1046/j.1469-1809.2005.00155.x</identifier><identifier>PMID: 15720299</identifier><language>eng</language><publisher>350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK: Blackwell Science Ltd</publisher><subject>Coronary Disease - genetics ; Female ; Genetic Burden ; Genetic Predisposition to Disease ; Humans ; Male ; Phenotype ; Polygenic Traits ; Polymorphism, Single Nucleotide ; Risk Assessment</subject><ispartof>Annals of human genetics, 2005-03, Vol.69 (2), p.176-186</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3085-4a0dcfb73ca25fea1c6568b499d00a68f3e969327afb17f13589f9777f5559b83</citedby><cites>FETCH-LOGICAL-c3085-4a0dcfb73ca25fea1c6568b499d00a68f3e969327afb17f13589f9777f5559b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1469-1809.2005.00155.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1469-1809.2005.00155.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15720299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horne, B. D.</creatorcontrib><creatorcontrib>Anderson, J. L.</creatorcontrib><creatorcontrib>Carlquist, J. F.</creatorcontrib><creatorcontrib>Muhlestein, J. B.</creatorcontrib><creatorcontrib>Renlund, D. G.</creatorcontrib><creatorcontrib>Bair, T. L.</creatorcontrib><creatorcontrib>Pearson, R. R.</creatorcontrib><creatorcontrib>Camp, N. J.</creatorcontrib><title>Generating Genetic Risk Scores from Intermediate Phenotypes for Use in Association Studies of Clinically Significant Endpoints</title><title>Annals of human genetics</title><addtitle>Ann Hum Genet</addtitle><description>Summary While previous results of genetic association studies for common, complex diseases (eg., coronary artery disease, CAD) have been disappointing, examination of multiple related genes within a physiologic pathway may provide improved resolution. This paper describes a method of calculating a genetic risk score (GRS) for a clinical endpoint by integrating data from many candidate genes and multiple intermediate phenotypes (IPs). First, the association of all single nucleotide polymorphisms (SNPs) to an IP is determined and regression β‐coefficients are used to calculate an IP‐specific GRS for each individual, repeating this analysis for every IP. Next, the IPs are assessed by a second regression as predictors of the clinical endpoint. Each IP's individual GRS is then weighted by the regression β‐coefficients from the second step, creating a single, composite GRS. As an example, 3,172 patients undergoing coronary angiography were evaluated for 3 SNPs from the cholesterol metabolism pathway. Although these data provide only a preliminary example, the GRS method detected significant differences in CAD by GRS group, whereas separate genotypes did not. These results illustrate the potential of the GRS methodology for multigenic risk evaluation and suggest that such approaches deserve further examination in common, complex diseases such as CAD.</description><subject>Coronary Disease - genetics</subject><subject>Female</subject><subject>Genetic Burden</subject><subject>Genetic Predisposition to Disease</subject><subject>Humans</subject><subject>Male</subject><subject>Phenotype</subject><subject>Polygenic Traits</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Risk Assessment</subject><issn>0003-4800</issn><issn>1469-1809</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFuEzEQhi0EomnhFZBP3HYZr-21LXGJopJWqgQi9Gx5vXZx2NjB3qjNhWdnt4ngCKeZ0f_NWPKHECZQE2Dth21NWKsqIkHVDQCvAQjn9dMLtPgTvEQLAKAVkwAX6LKU7QQ1ktHX6IJw0UCj1AL9WrvoshlDfMBzOwaLv4byA29syq5gn9MO38bR5Z3rgxkd_vLdxTQe93OYMr4vDoeIl6UkO-UhRbwZD32Y4uTxaggxWDMMR7wJDzH4aYgjvo79PoU4ljfolTdDcW_P9Qrdf7r-trqp7j6vb1fLu8pSkLxiBnrrO0Gtabh3htiWt7JjSvUAppWeOtUq2gjjOyI8oVwqr4QQnnOuOkmv0PvT3X1OPw-ujHoXinXDYKJLh6JbwRgTLf8nSBRrQDAygfIE2pxKyc7rfQ47k4-agJ4l6a2eXejZhZ4l6WdJ-mlafXd-49BNv_p38WxlAj6egMcwuON_H9bLm_XU0N-SG6GJ</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Horne, B. D.</creator><creator>Anderson, J. L.</creator><creator>Carlquist, J. F.</creator><creator>Muhlestein, J. B.</creator><creator>Renlund, D. G.</creator><creator>Bair, T. L.</creator><creator>Pearson, R. R.</creator><creator>Camp, N. J.</creator><general>Blackwell Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200503</creationdate><title>Generating Genetic Risk Scores from Intermediate Phenotypes for Use in Association Studies of Clinically Significant Endpoints</title><author>Horne, B. D. ; Anderson, J. L. ; Carlquist, J. F. ; Muhlestein, J. B. ; Renlund, D. G. ; Bair, T. L. ; Pearson, R. R. ; Camp, N. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3085-4a0dcfb73ca25fea1c6568b499d00a68f3e969327afb17f13589f9777f5559b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Coronary Disease - genetics</topic><topic>Female</topic><topic>Genetic Burden</topic><topic>Genetic Predisposition to Disease</topic><topic>Humans</topic><topic>Male</topic><topic>Phenotype</topic><topic>Polygenic Traits</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Risk Assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horne, B. D.</creatorcontrib><creatorcontrib>Anderson, J. L.</creatorcontrib><creatorcontrib>Carlquist, J. F.</creatorcontrib><creatorcontrib>Muhlestein, J. B.</creatorcontrib><creatorcontrib>Renlund, D. G.</creatorcontrib><creatorcontrib>Bair, T. L.</creatorcontrib><creatorcontrib>Pearson, R. R.</creatorcontrib><creatorcontrib>Camp, N. J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horne, B. D.</au><au>Anderson, J. L.</au><au>Carlquist, J. F.</au><au>Muhlestein, J. B.</au><au>Renlund, D. G.</au><au>Bair, T. L.</au><au>Pearson, R. R.</au><au>Camp, N. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating Genetic Risk Scores from Intermediate Phenotypes for Use in Association Studies of Clinically Significant Endpoints</atitle><jtitle>Annals of human genetics</jtitle><addtitle>Ann Hum Genet</addtitle><date>2005-03</date><risdate>2005</risdate><volume>69</volume><issue>2</issue><spage>176</spage><epage>186</epage><pages>176-186</pages><issn>0003-4800</issn><eissn>1469-1809</eissn><abstract>Summary While previous results of genetic association studies for common, complex diseases (eg., coronary artery disease, CAD) have been disappointing, examination of multiple related genes within a physiologic pathway may provide improved resolution. This paper describes a method of calculating a genetic risk score (GRS) for a clinical endpoint by integrating data from many candidate genes and multiple intermediate phenotypes (IPs). First, the association of all single nucleotide polymorphisms (SNPs) to an IP is determined and regression β‐coefficients are used to calculate an IP‐specific GRS for each individual, repeating this analysis for every IP. Next, the IPs are assessed by a second regression as predictors of the clinical endpoint. Each IP's individual GRS is then weighted by the regression β‐coefficients from the second step, creating a single, composite GRS. As an example, 3,172 patients undergoing coronary angiography were evaluated for 3 SNPs from the cholesterol metabolism pathway. Although these data provide only a preliminary example, the GRS method detected significant differences in CAD by GRS group, whereas separate genotypes did not. These results illustrate the potential of the GRS methodology for multigenic risk evaluation and suggest that such approaches deserve further examination in common, complex diseases such as CAD.</abstract><cop>350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK</cop><pub>Blackwell Science Ltd</pub><pmid>15720299</pmid><doi>10.1046/j.1469-1809.2005.00155.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-4800
ispartof Annals of human genetics, 2005-03, Vol.69 (2), p.176-186
issn 0003-4800
1469-1809
language eng
recordid cdi_proquest_miscellaneous_67444765
source MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; IngentaConnect Free/Open Access Journals
subjects Coronary Disease - genetics
Female
Genetic Burden
Genetic Predisposition to Disease
Humans
Male
Phenotype
Polygenic Traits
Polymorphism, Single Nucleotide
Risk Assessment
title Generating Genetic Risk Scores from Intermediate Phenotypes for Use in Association Studies of Clinically Significant Endpoints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20Genetic%20Risk%20Scores%20from%20Intermediate%20Phenotypes%20for%20Use%20in%20Association%20Studies%20of%20Clinically%20Significant%20Endpoints&rft.jtitle=Annals%20of%20human%20genetics&rft.au=Horne,%20B.%20D.&rft.date=2005-03&rft.volume=69&rft.issue=2&rft.spage=176&rft.epage=186&rft.pages=176-186&rft.issn=0003-4800&rft.eissn=1469-1809&rft_id=info:doi/10.1046/j.1469-1809.2005.00155.x&rft_dat=%3Cproquest_cross%3E67444765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19420741&rft_id=info:pmid/15720299&rfr_iscdi=true