Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips

The effective design and control of a capillary electrophoresis (CE) microchip requires a thorough understanding of the electrokinetic transport phenomena associated with its microfluidic injection system. The present study utilizes a numerical simulation approach to investigate these electrokinetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2005-02, Vol.26 (3), p.674-686
Hauptverfasser: Tsai, Chien-Hsiung, Yang, Ruey-Jen, Tai, Chang-Hsien, Fu, Lung-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 686
container_issue 3
container_start_page 674
container_title Electrophoresis
container_volume 26
creator Tsai, Chien-Hsiung
Yang, Ruey-Jen
Tai, Chang-Hsien
Fu, Lung-Ming
description The effective design and control of a capillary electrophoresis (CE) microchip requires a thorough understanding of the electrokinetic transport phenomena associated with its microfluidic injection system. The present study utilizes a numerical simulation approach to investigate these electrokinetic transport processes and to study the control parameters of the injection process. Injection systems with a variety of different configurations are designed and tested, including the cross‐form, T‐form, double‐T‐form, variable‐volume focused flow cross‐form, and variable‐volume triple‐T‐form configuration. Each injection system cycles through a predetermined series of steps in which the magnitudes and distributions of the applied electric field are precisely manipulated in order to effectuate a virtual valve. This study investigates the sample leakage effect associated with each of the injection configurations and applies the double‐L, pullback, and focusing injection techniques to minimize the sample leakage effect. The injection methods presented in this paper have the exciting potential for use in high‐quality, high‐throughput chemical analysis applications and throughout the micro‐total‐analysis systems field.
doi_str_mv 10.1002/elps.200410032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67440647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67440647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4472-4a5e942068fd6fbd9257aa5f1420b154c9cb8865560bb72bfbd7ccb0bbc55dae3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EoqWwMqJMbCmOY-cxoqq0SKUgUehoOc6N6jYv7ETQf4-jlMLGZN_r7xwdH4SuPTz2MCZ3kNdmTDCmdvLJCRp6jBCXBJF_iobYC30XRz4boAtjtthiMaXnaOCxIMaU4CGSy7YAraTIHaOKNheNqkqnyhzIQTa62qkSGiUdVW7t3L01IDel-mjB2KUjRa3yXOj9j6DeVBqMMk6hpK7kRtXmEp1lIjdwdThH6O1huprM3cXz7HFyv3AlpSFxqWAQ21BBlKVBlqQxYaEQLPPsLvEYlbFMoihgLMBJEpLEIqGUiR0kY6kAf4Rue99aV12-hhfKSLDxSqhaw4OQUhzQ0ILjHrQJjdGQ8Vqrwn6Ce5h3tfKuVn6s1QpuDs5tUkD6ix96tEDcA58qh_0_dny6eHn9a-72WmUa-Dpqhd7ZxH7I-Ho5s7f1cv6-euIr_xsPu5cl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67440647</pqid></control><display><type>article</type><title>Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tsai, Chien-Hsiung ; Yang, Ruey-Jen ; Tai, Chang-Hsien ; Fu, Lung-Ming</creator><creatorcontrib>Tsai, Chien-Hsiung ; Yang, Ruey-Jen ; Tai, Chang-Hsien ; Fu, Lung-Ming</creatorcontrib><description>The effective design and control of a capillary electrophoresis (CE) microchip requires a thorough understanding of the electrokinetic transport phenomena associated with its microfluidic injection system. The present study utilizes a numerical simulation approach to investigate these electrokinetic transport processes and to study the control parameters of the injection process. Injection systems with a variety of different configurations are designed and tested, including the cross‐form, T‐form, double‐T‐form, variable‐volume focused flow cross‐form, and variable‐volume triple‐T‐form configuration. Each injection system cycles through a predetermined series of steps in which the magnitudes and distributions of the applied electric field are precisely manipulated in order to effectuate a virtual valve. This study investigates the sample leakage effect associated with each of the injection configurations and applies the double‐L, pullback, and focusing injection techniques to minimize the sample leakage effect. The injection methods presented in this paper have the exciting potential for use in high‐quality, high‐throughput chemical analysis applications and throughout the micro‐total‐analysis systems field.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.200410032</identifier><identifier>PMID: 15690420</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Capillary electrophoresis ; Electrokinetic injection techniques ; Electrophoresis, Microchip ; Injections - methods ; Kinetics ; Leakage effect ; Mathematics ; Microchips ; Models, Theoretical</subject><ispartof>Electrophoresis, 2005-02, Vol.26 (3), p.674-686</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4472-4a5e942068fd6fbd9257aa5f1420b154c9cb8865560bb72bfbd7ccb0bbc55dae3</citedby><cites>FETCH-LOGICAL-c4472-4a5e942068fd6fbd9257aa5f1420b154c9cb8865560bb72bfbd7ccb0bbc55dae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.200410032$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15690420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsai, Chien-Hsiung</creatorcontrib><creatorcontrib>Yang, Ruey-Jen</creatorcontrib><creatorcontrib>Tai, Chang-Hsien</creatorcontrib><creatorcontrib>Fu, Lung-Ming</creatorcontrib><title>Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips</title><title>Electrophoresis</title><addtitle>ELECTROPHORESIS</addtitle><description>The effective design and control of a capillary electrophoresis (CE) microchip requires a thorough understanding of the electrokinetic transport phenomena associated with its microfluidic injection system. The present study utilizes a numerical simulation approach to investigate these electrokinetic transport processes and to study the control parameters of the injection process. Injection systems with a variety of different configurations are designed and tested, including the cross‐form, T‐form, double‐T‐form, variable‐volume focused flow cross‐form, and variable‐volume triple‐T‐form configuration. Each injection system cycles through a predetermined series of steps in which the magnitudes and distributions of the applied electric field are precisely manipulated in order to effectuate a virtual valve. This study investigates the sample leakage effect associated with each of the injection configurations and applies the double‐L, pullback, and focusing injection techniques to minimize the sample leakage effect. The injection methods presented in this paper have the exciting potential for use in high‐quality, high‐throughput chemical analysis applications and throughout the micro‐total‐analysis systems field.</description><subject>Capillary electrophoresis</subject><subject>Electrokinetic injection techniques</subject><subject>Electrophoresis, Microchip</subject><subject>Injections - methods</subject><subject>Kinetics</subject><subject>Leakage effect</subject><subject>Mathematics</subject><subject>Microchips</subject><subject>Models, Theoretical</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAUhS0EoqWwMqJMbCmOY-cxoqq0SKUgUehoOc6N6jYv7ETQf4-jlMLGZN_r7xwdH4SuPTz2MCZ3kNdmTDCmdvLJCRp6jBCXBJF_iobYC30XRz4boAtjtthiMaXnaOCxIMaU4CGSy7YAraTIHaOKNheNqkqnyhzIQTa62qkSGiUdVW7t3L01IDel-mjB2KUjRa3yXOj9j6DeVBqMMk6hpK7kRtXmEp1lIjdwdThH6O1huprM3cXz7HFyv3AlpSFxqWAQ21BBlKVBlqQxYaEQLPPsLvEYlbFMoihgLMBJEpLEIqGUiR0kY6kAf4Rue99aV12-hhfKSLDxSqhaw4OQUhzQ0ILjHrQJjdGQ8Vqrwn6Ce5h3tfKuVn6s1QpuDs5tUkD6ix96tEDcA58qh_0_dny6eHn9a-72WmUa-Dpqhd7ZxH7I-Ho5s7f1cv6-euIr_xsPu5cl</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Tsai, Chien-Hsiung</creator><creator>Yang, Ruey-Jen</creator><creator>Tai, Chang-Hsien</creator><creator>Fu, Lung-Ming</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050201</creationdate><title>Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips</title><author>Tsai, Chien-Hsiung ; Yang, Ruey-Jen ; Tai, Chang-Hsien ; Fu, Lung-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4472-4a5e942068fd6fbd9257aa5f1420b154c9cb8865560bb72bfbd7ccb0bbc55dae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Capillary electrophoresis</topic><topic>Electrokinetic injection techniques</topic><topic>Electrophoresis, Microchip</topic><topic>Injections - methods</topic><topic>Kinetics</topic><topic>Leakage effect</topic><topic>Mathematics</topic><topic>Microchips</topic><topic>Models, Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Chien-Hsiung</creatorcontrib><creatorcontrib>Yang, Ruey-Jen</creatorcontrib><creatorcontrib>Tai, Chang-Hsien</creatorcontrib><creatorcontrib>Fu, Lung-Ming</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Chien-Hsiung</au><au>Yang, Ruey-Jen</au><au>Tai, Chang-Hsien</au><au>Fu, Lung-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips</atitle><jtitle>Electrophoresis</jtitle><addtitle>ELECTROPHORESIS</addtitle><date>2005-02-01</date><risdate>2005</risdate><volume>26</volume><issue>3</issue><spage>674</spage><epage>686</epage><pages>674-686</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>The effective design and control of a capillary electrophoresis (CE) microchip requires a thorough understanding of the electrokinetic transport phenomena associated with its microfluidic injection system. The present study utilizes a numerical simulation approach to investigate these electrokinetic transport processes and to study the control parameters of the injection process. Injection systems with a variety of different configurations are designed and tested, including the cross‐form, T‐form, double‐T‐form, variable‐volume focused flow cross‐form, and variable‐volume triple‐T‐form configuration. Each injection system cycles through a predetermined series of steps in which the magnitudes and distributions of the applied electric field are precisely manipulated in order to effectuate a virtual valve. This study investigates the sample leakage effect associated with each of the injection configurations and applies the double‐L, pullback, and focusing injection techniques to minimize the sample leakage effect. The injection methods presented in this paper have the exciting potential for use in high‐quality, high‐throughput chemical analysis applications and throughout the micro‐total‐analysis systems field.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>15690420</pmid><doi>10.1002/elps.200410032</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2005-02, Vol.26 (3), p.674-686
issn 0173-0835
1522-2683
language eng
recordid cdi_proquest_miscellaneous_67440647
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Capillary electrophoresis
Electrokinetic injection techniques
Electrophoresis, Microchip
Injections - methods
Kinetics
Leakage effect
Mathematics
Microchips
Models, Theoretical
title Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20electrokinetic%20injection%20techniques%20in%20capillary%20electrophoresis%20microchips&rft.jtitle=Electrophoresis&rft.au=Tsai,%20Chien-Hsiung&rft.date=2005-02-01&rft.volume=26&rft.issue=3&rft.spage=674&rft.epage=686&rft.pages=674-686&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.200410032&rft_dat=%3Cproquest_cross%3E67440647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67440647&rft_id=info:pmid/15690420&rfr_iscdi=true