Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips
The effective design and control of a capillary electrophoresis (CE) microchip requires a thorough understanding of the electrokinetic transport phenomena associated with its microfluidic injection system. The present study utilizes a numerical simulation approach to investigate these electrokinetic...
Gespeichert in:
Veröffentlicht in: | Electrophoresis 2005-02, Vol.26 (3), p.674-686 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 686 |
---|---|
container_issue | 3 |
container_start_page | 674 |
container_title | Electrophoresis |
container_volume | 26 |
creator | Tsai, Chien-Hsiung Yang, Ruey-Jen Tai, Chang-Hsien Fu, Lung-Ming |
description | The effective design and control of a capillary electrophoresis (CE) microchip requires a thorough understanding of the electrokinetic transport phenomena associated with its microfluidic injection system. The present study utilizes a numerical simulation approach to investigate these electrokinetic transport processes and to study the control parameters of the injection process. Injection systems with a variety of different configurations are designed and tested, including the cross‐form, T‐form, double‐T‐form, variable‐volume focused flow cross‐form, and variable‐volume triple‐T‐form configuration. Each injection system cycles through a predetermined series of steps in which the magnitudes and distributions of the applied electric field are precisely manipulated in order to effectuate a virtual valve. This study investigates the sample leakage effect associated with each of the injection configurations and applies the double‐L, pullback, and focusing injection techniques to minimize the sample leakage effect. The injection methods presented in this paper have the exciting potential for use in high‐quality, high‐throughput chemical analysis applications and throughout the micro‐total‐analysis systems field. |
doi_str_mv | 10.1002/elps.200410032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67440647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67440647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4472-4a5e942068fd6fbd9257aa5f1420b154c9cb8865560bb72bfbd7ccb0bbc55dae3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EoqWwMqJMbCmOY-cxoqq0SKUgUehoOc6N6jYv7ETQf4-jlMLGZN_r7xwdH4SuPTz2MCZ3kNdmTDCmdvLJCRp6jBCXBJF_iobYC30XRz4boAtjtthiMaXnaOCxIMaU4CGSy7YAraTIHaOKNheNqkqnyhzIQTa62qkSGiUdVW7t3L01IDel-mjB2KUjRa3yXOj9j6DeVBqMMk6hpK7kRtXmEp1lIjdwdThH6O1huprM3cXz7HFyv3AlpSFxqWAQ21BBlKVBlqQxYaEQLPPsLvEYlbFMoihgLMBJEpLEIqGUiR0kY6kAf4Rue99aV12-hhfKSLDxSqhaw4OQUhzQ0ILjHrQJjdGQ8Vqrwn6Ce5h3tfKuVn6s1QpuDs5tUkD6ix96tEDcA58qh_0_dny6eHn9a-72WmUa-Dpqhd7ZxH7I-Ho5s7f1cv6-euIr_xsPu5cl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67440647</pqid></control><display><type>article</type><title>Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tsai, Chien-Hsiung ; Yang, Ruey-Jen ; Tai, Chang-Hsien ; Fu, Lung-Ming</creator><creatorcontrib>Tsai, Chien-Hsiung ; Yang, Ruey-Jen ; Tai, Chang-Hsien ; Fu, Lung-Ming</creatorcontrib><description>The effective design and control of a capillary electrophoresis (CE) microchip requires a thorough understanding of the electrokinetic transport phenomena associated with its microfluidic injection system. The present study utilizes a numerical simulation approach to investigate these electrokinetic transport processes and to study the control parameters of the injection process. Injection systems with a variety of different configurations are designed and tested, including the cross‐form, T‐form, double‐T‐form, variable‐volume focused flow cross‐form, and variable‐volume triple‐T‐form configuration. Each injection system cycles through a predetermined series of steps in which the magnitudes and distributions of the applied electric field are precisely manipulated in order to effectuate a virtual valve. This study investigates the sample leakage effect associated with each of the injection configurations and applies the double‐L, pullback, and focusing injection techniques to minimize the sample leakage effect. The injection methods presented in this paper have the exciting potential for use in high‐quality, high‐throughput chemical analysis applications and throughout the micro‐total‐analysis systems field.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.200410032</identifier><identifier>PMID: 15690420</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Capillary electrophoresis ; Electrokinetic injection techniques ; Electrophoresis, Microchip ; Injections - methods ; Kinetics ; Leakage effect ; Mathematics ; Microchips ; Models, Theoretical</subject><ispartof>Electrophoresis, 2005-02, Vol.26 (3), p.674-686</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4472-4a5e942068fd6fbd9257aa5f1420b154c9cb8865560bb72bfbd7ccb0bbc55dae3</citedby><cites>FETCH-LOGICAL-c4472-4a5e942068fd6fbd9257aa5f1420b154c9cb8865560bb72bfbd7ccb0bbc55dae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.200410032$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15690420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsai, Chien-Hsiung</creatorcontrib><creatorcontrib>Yang, Ruey-Jen</creatorcontrib><creatorcontrib>Tai, Chang-Hsien</creatorcontrib><creatorcontrib>Fu, Lung-Ming</creatorcontrib><title>Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips</title><title>Electrophoresis</title><addtitle>ELECTROPHORESIS</addtitle><description>The effective design and control of a capillary electrophoresis (CE) microchip requires a thorough understanding of the electrokinetic transport phenomena associated with its microfluidic injection system. The present study utilizes a numerical simulation approach to investigate these electrokinetic transport processes and to study the control parameters of the injection process. Injection systems with a variety of different configurations are designed and tested, including the cross‐form, T‐form, double‐T‐form, variable‐volume focused flow cross‐form, and variable‐volume triple‐T‐form configuration. Each injection system cycles through a predetermined series of steps in which the magnitudes and distributions of the applied electric field are precisely manipulated in order to effectuate a virtual valve. This study investigates the sample leakage effect associated with each of the injection configurations and applies the double‐L, pullback, and focusing injection techniques to minimize the sample leakage effect. The injection methods presented in this paper have the exciting potential for use in high‐quality, high‐throughput chemical analysis applications and throughout the micro‐total‐analysis systems field.</description><subject>Capillary electrophoresis</subject><subject>Electrokinetic injection techniques</subject><subject>Electrophoresis, Microchip</subject><subject>Injections - methods</subject><subject>Kinetics</subject><subject>Leakage effect</subject><subject>Mathematics</subject><subject>Microchips</subject><subject>Models, Theoretical</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAUhS0EoqWwMqJMbCmOY-cxoqq0SKUgUehoOc6N6jYv7ETQf4-jlMLGZN_r7xwdH4SuPTz2MCZ3kNdmTDCmdvLJCRp6jBCXBJF_iobYC30XRz4boAtjtthiMaXnaOCxIMaU4CGSy7YAraTIHaOKNheNqkqnyhzIQTa62qkSGiUdVW7t3L01IDel-mjB2KUjRa3yXOj9j6DeVBqMMk6hpK7kRtXmEp1lIjdwdThH6O1huprM3cXz7HFyv3AlpSFxqWAQ21BBlKVBlqQxYaEQLPPsLvEYlbFMoihgLMBJEpLEIqGUiR0kY6kAf4Rue99aV12-hhfKSLDxSqhaw4OQUhzQ0ILjHrQJjdGQ8Vqrwn6Ce5h3tfKuVn6s1QpuDs5tUkD6ix96tEDcA58qh_0_dny6eHn9a-72WmUa-Dpqhd7ZxH7I-Ho5s7f1cv6-euIr_xsPu5cl</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Tsai, Chien-Hsiung</creator><creator>Yang, Ruey-Jen</creator><creator>Tai, Chang-Hsien</creator><creator>Fu, Lung-Ming</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050201</creationdate><title>Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips</title><author>Tsai, Chien-Hsiung ; Yang, Ruey-Jen ; Tai, Chang-Hsien ; Fu, Lung-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4472-4a5e942068fd6fbd9257aa5f1420b154c9cb8865560bb72bfbd7ccb0bbc55dae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Capillary electrophoresis</topic><topic>Electrokinetic injection techniques</topic><topic>Electrophoresis, Microchip</topic><topic>Injections - methods</topic><topic>Kinetics</topic><topic>Leakage effect</topic><topic>Mathematics</topic><topic>Microchips</topic><topic>Models, Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Chien-Hsiung</creatorcontrib><creatorcontrib>Yang, Ruey-Jen</creatorcontrib><creatorcontrib>Tai, Chang-Hsien</creatorcontrib><creatorcontrib>Fu, Lung-Ming</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Chien-Hsiung</au><au>Yang, Ruey-Jen</au><au>Tai, Chang-Hsien</au><au>Fu, Lung-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips</atitle><jtitle>Electrophoresis</jtitle><addtitle>ELECTROPHORESIS</addtitle><date>2005-02-01</date><risdate>2005</risdate><volume>26</volume><issue>3</issue><spage>674</spage><epage>686</epage><pages>674-686</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>The effective design and control of a capillary electrophoresis (CE) microchip requires a thorough understanding of the electrokinetic transport phenomena associated with its microfluidic injection system. The present study utilizes a numerical simulation approach to investigate these electrokinetic transport processes and to study the control parameters of the injection process. Injection systems with a variety of different configurations are designed and tested, including the cross‐form, T‐form, double‐T‐form, variable‐volume focused flow cross‐form, and variable‐volume triple‐T‐form configuration. Each injection system cycles through a predetermined series of steps in which the magnitudes and distributions of the applied electric field are precisely manipulated in order to effectuate a virtual valve. This study investigates the sample leakage effect associated with each of the injection configurations and applies the double‐L, pullback, and focusing injection techniques to minimize the sample leakage effect. The injection methods presented in this paper have the exciting potential for use in high‐quality, high‐throughput chemical analysis applications and throughout the micro‐total‐analysis systems field.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>15690420</pmid><doi>10.1002/elps.200410032</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0173-0835 |
ispartof | Electrophoresis, 2005-02, Vol.26 (3), p.674-686 |
issn | 0173-0835 1522-2683 |
language | eng |
recordid | cdi_proquest_miscellaneous_67440647 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Capillary electrophoresis Electrokinetic injection techniques Electrophoresis, Microchip Injections - methods Kinetics Leakage effect Mathematics Microchips Models, Theoretical |
title | Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20electrokinetic%20injection%20techniques%20in%20capillary%20electrophoresis%20microchips&rft.jtitle=Electrophoresis&rft.au=Tsai,%20Chien-Hsiung&rft.date=2005-02-01&rft.volume=26&rft.issue=3&rft.spage=674&rft.epage=686&rft.pages=674-686&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.200410032&rft_dat=%3Cproquest_cross%3E67440647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67440647&rft_id=info:pmid/15690420&rfr_iscdi=true |