Laser treatment of leg veins: Physical mechanisms and theoretical considerations
Background and Objectives A discussion of laser treatment of leg veins is based on a review of the literature, theoretical analysis, and the clinical experiences of the authors. Theoretical computations are discussed within the context of clinical observations. Study Design/Materials and Methods A M...
Gespeichert in:
Veröffentlicht in: | Lasers in surgery and medicine 2005-02, Vol.36 (2), p.105-116 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 116 |
---|---|
container_issue | 2 |
container_start_page | 105 |
container_title | Lasers in surgery and medicine |
container_volume | 36 |
creator | Ross, Edward Victor Domankevitz, Yacov |
description | Background and Objectives
A discussion of laser treatment of leg veins is based on a review of the literature, theoretical analysis, and the clinical experiences of the authors. Theoretical computations are discussed within the context of clinical observations.
Study Design/Materials and Methods
A Monte Carlo model is used to examine volumetric heat production, fluence rate, and temperature profiles in blood vessels at 1,064 and 532 nm wavelengths with various beam diameters, vessel diameters, and pulse durations.
Results
Clinical observations, Monte Carlo results, and a review of the literature suggest that longer wavelengths and longer pulses durations favor vessel contraction over intraluminal thrombosis. Monte Carlo simulations show that longer wavelengths are more likely to uniformly heat the vessel compared to highly absorbing wavelengths. Methemoglobin production causes deeply penetrating wavelengths to generate more volumetric heat for the same input radiant exposure.
Conclusions
Clinical observations and models support the role of long wavelengths and long pulses in optimal clearance of most leg telangiectasias. Lasers Surg. Med. 36:105–116, 2005. © 2005 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/lsm.20141 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67439239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19428676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3921-3c0fabdafda77928a1dcf7d99ac8d962746f5caa456bac9c046eaa5f796cc1e3</originalsourceid><addsrcrecordid>eNqFkM1PAjEQxRujEUQP_gNmTyYeFtr9aLfeDBEwQTRKYuKlGbqzUt0PbBeV_94VUE_G07xkfu9N5hFyzGiXURr0cld0A8oitkPajEruS0bZLmlT1uiEyqBFDpx7ppSGARX7pMViQSPGkza5HYND69UWoS6wrL0q83J88t7QlO7cu52vnNGQewXqOZTGFc6DMvXqOVYW6_VKV6UzKVqoTaMOyV4GucOj7eyQ6eBy2h_545vhVf9i7OtQBswPNc1glkKWghAySIClOhOplKCTVPJARDyLNUAU8xloqWnEESDOhORaMww75HQTu7DV6xJdrQrjNOY5lFgtneIiau6E8l-QyShIuOANeLYBta2cs5iphTUF2JViVH3VrJqa1brmhj3Zhi5nBaa_5LbXBuhtgHeT4-rvJDW-v_6O9DcO42r8-HGAfWl-CUWsHiZDlSTDwZ14HKlJ-AkkD5eu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19428676</pqid></control><display><type>article</type><title>Laser treatment of leg veins: Physical mechanisms and theoretical considerations</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ross, Edward Victor ; Domankevitz, Yacov</creator><creatorcontrib>Ross, Edward Victor ; Domankevitz, Yacov</creatorcontrib><description>Background and Objectives
A discussion of laser treatment of leg veins is based on a review of the literature, theoretical analysis, and the clinical experiences of the authors. Theoretical computations are discussed within the context of clinical observations.
Study Design/Materials and Methods
A Monte Carlo model is used to examine volumetric heat production, fluence rate, and temperature profiles in blood vessels at 1,064 and 532 nm wavelengths with various beam diameters, vessel diameters, and pulse durations.
Results
Clinical observations, Monte Carlo results, and a review of the literature suggest that longer wavelengths and longer pulses durations favor vessel contraction over intraluminal thrombosis. Monte Carlo simulations show that longer wavelengths are more likely to uniformly heat the vessel compared to highly absorbing wavelengths. Methemoglobin production causes deeply penetrating wavelengths to generate more volumetric heat for the same input radiant exposure.
Conclusions
Clinical observations and models support the role of long wavelengths and long pulses in optimal clearance of most leg telangiectasias. Lasers Surg. Med. 36:105–116, 2005. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 0196-8092</identifier><identifier>EISSN: 1096-9101</identifier><identifier>DOI: 10.1002/lsm.20141</identifier><identifier>PMID: 15704168</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Humans ; laser ; leg ; Leg - blood supply ; light ; Low-Level Light Therapy - methods ; mechanism ; Monte Carlo Method ; Patient Simulation ; Sensitivity and Specificity ; telangiectasia ; Telangiectasis - pathology ; Telangiectasis - radiotherapy ; Varicose Veins - pathology ; Varicose Veins - radiotherapy</subject><ispartof>Lasers in surgery and medicine, 2005-02, Vol.36 (2), p.105-116</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><rights>(c) 2005 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3921-3c0fabdafda77928a1dcf7d99ac8d962746f5caa456bac9c046eaa5f796cc1e3</citedby><cites>FETCH-LOGICAL-c3921-3c0fabdafda77928a1dcf7d99ac8d962746f5caa456bac9c046eaa5f796cc1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flsm.20141$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flsm.20141$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15704168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ross, Edward Victor</creatorcontrib><creatorcontrib>Domankevitz, Yacov</creatorcontrib><title>Laser treatment of leg veins: Physical mechanisms and theoretical considerations</title><title>Lasers in surgery and medicine</title><addtitle>Lasers Surg. Med</addtitle><description>Background and Objectives
A discussion of laser treatment of leg veins is based on a review of the literature, theoretical analysis, and the clinical experiences of the authors. Theoretical computations are discussed within the context of clinical observations.
Study Design/Materials and Methods
A Monte Carlo model is used to examine volumetric heat production, fluence rate, and temperature profiles in blood vessels at 1,064 and 532 nm wavelengths with various beam diameters, vessel diameters, and pulse durations.
Results
Clinical observations, Monte Carlo results, and a review of the literature suggest that longer wavelengths and longer pulses durations favor vessel contraction over intraluminal thrombosis. Monte Carlo simulations show that longer wavelengths are more likely to uniformly heat the vessel compared to highly absorbing wavelengths. Methemoglobin production causes deeply penetrating wavelengths to generate more volumetric heat for the same input radiant exposure.
Conclusions
Clinical observations and models support the role of long wavelengths and long pulses in optimal clearance of most leg telangiectasias. Lasers Surg. Med. 36:105–116, 2005. © 2005 Wiley‐Liss, Inc.</description><subject>Humans</subject><subject>laser</subject><subject>leg</subject><subject>Leg - blood supply</subject><subject>light</subject><subject>Low-Level Light Therapy - methods</subject><subject>mechanism</subject><subject>Monte Carlo Method</subject><subject>Patient Simulation</subject><subject>Sensitivity and Specificity</subject><subject>telangiectasia</subject><subject>Telangiectasis - pathology</subject><subject>Telangiectasis - radiotherapy</subject><subject>Varicose Veins - pathology</subject><subject>Varicose Veins - radiotherapy</subject><issn>0196-8092</issn><issn>1096-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1PAjEQxRujEUQP_gNmTyYeFtr9aLfeDBEwQTRKYuKlGbqzUt0PbBeV_94VUE_G07xkfu9N5hFyzGiXURr0cld0A8oitkPajEruS0bZLmlT1uiEyqBFDpx7ppSGARX7pMViQSPGkza5HYND69UWoS6wrL0q83J88t7QlO7cu52vnNGQewXqOZTGFc6DMvXqOVYW6_VKV6UzKVqoTaMOyV4GucOj7eyQ6eBy2h_545vhVf9i7OtQBswPNc1glkKWghAySIClOhOplKCTVPJARDyLNUAU8xloqWnEESDOhORaMww75HQTu7DV6xJdrQrjNOY5lFgtneIiau6E8l-QyShIuOANeLYBta2cs5iphTUF2JViVH3VrJqa1brmhj3Zhi5nBaa_5LbXBuhtgHeT4-rvJDW-v_6O9DcO42r8-HGAfWl-CUWsHiZDlSTDwZ14HKlJ-AkkD5eu</recordid><startdate>200502</startdate><enddate>200502</enddate><creator>Ross, Edward Victor</creator><creator>Domankevitz, Yacov</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200502</creationdate><title>Laser treatment of leg veins: Physical mechanisms and theoretical considerations</title><author>Ross, Edward Victor ; Domankevitz, Yacov</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3921-3c0fabdafda77928a1dcf7d99ac8d962746f5caa456bac9c046eaa5f796cc1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Humans</topic><topic>laser</topic><topic>leg</topic><topic>Leg - blood supply</topic><topic>light</topic><topic>Low-Level Light Therapy - methods</topic><topic>mechanism</topic><topic>Monte Carlo Method</topic><topic>Patient Simulation</topic><topic>Sensitivity and Specificity</topic><topic>telangiectasia</topic><topic>Telangiectasis - pathology</topic><topic>Telangiectasis - radiotherapy</topic><topic>Varicose Veins - pathology</topic><topic>Varicose Veins - radiotherapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, Edward Victor</creatorcontrib><creatorcontrib>Domankevitz, Yacov</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Lasers in surgery and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, Edward Victor</au><au>Domankevitz, Yacov</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser treatment of leg veins: Physical mechanisms and theoretical considerations</atitle><jtitle>Lasers in surgery and medicine</jtitle><addtitle>Lasers Surg. Med</addtitle><date>2005-02</date><risdate>2005</risdate><volume>36</volume><issue>2</issue><spage>105</spage><epage>116</epage><pages>105-116</pages><issn>0196-8092</issn><eissn>1096-9101</eissn><abstract>Background and Objectives
A discussion of laser treatment of leg veins is based on a review of the literature, theoretical analysis, and the clinical experiences of the authors. Theoretical computations are discussed within the context of clinical observations.
Study Design/Materials and Methods
A Monte Carlo model is used to examine volumetric heat production, fluence rate, and temperature profiles in blood vessels at 1,064 and 532 nm wavelengths with various beam diameters, vessel diameters, and pulse durations.
Results
Clinical observations, Monte Carlo results, and a review of the literature suggest that longer wavelengths and longer pulses durations favor vessel contraction over intraluminal thrombosis. Monte Carlo simulations show that longer wavelengths are more likely to uniformly heat the vessel compared to highly absorbing wavelengths. Methemoglobin production causes deeply penetrating wavelengths to generate more volumetric heat for the same input radiant exposure.
Conclusions
Clinical observations and models support the role of long wavelengths and long pulses in optimal clearance of most leg telangiectasias. Lasers Surg. Med. 36:105–116, 2005. © 2005 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15704168</pmid><doi>10.1002/lsm.20141</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8092 |
ispartof | Lasers in surgery and medicine, 2005-02, Vol.36 (2), p.105-116 |
issn | 0196-8092 1096-9101 |
language | eng |
recordid | cdi_proquest_miscellaneous_67439239 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Humans laser leg Leg - blood supply light Low-Level Light Therapy - methods mechanism Monte Carlo Method Patient Simulation Sensitivity and Specificity telangiectasia Telangiectasis - pathology Telangiectasis - radiotherapy Varicose Veins - pathology Varicose Veins - radiotherapy |
title | Laser treatment of leg veins: Physical mechanisms and theoretical considerations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20treatment%20of%20leg%20veins:%20Physical%20mechanisms%20and%20theoretical%20considerations&rft.jtitle=Lasers%20in%20surgery%20and%20medicine&rft.au=Ross,%20Edward%20Victor&rft.date=2005-02&rft.volume=36&rft.issue=2&rft.spage=105&rft.epage=116&rft.pages=105-116&rft.issn=0196-8092&rft.eissn=1096-9101&rft_id=info:doi/10.1002/lsm.20141&rft_dat=%3Cproquest_cross%3E19428676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19428676&rft_id=info:pmid/15704168&rfr_iscdi=true |