Laser treatment of leg veins: Physical mechanisms and theoretical considerations

Background and Objectives A discussion of laser treatment of leg veins is based on a review of the literature, theoretical analysis, and the clinical experiences of the authors. Theoretical computations are discussed within the context of clinical observations. Study Design/Materials and Methods A M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lasers in surgery and medicine 2005-02, Vol.36 (2), p.105-116
Hauptverfasser: Ross, Edward Victor, Domankevitz, Yacov
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue 2
container_start_page 105
container_title Lasers in surgery and medicine
container_volume 36
creator Ross, Edward Victor
Domankevitz, Yacov
description Background and Objectives A discussion of laser treatment of leg veins is based on a review of the literature, theoretical analysis, and the clinical experiences of the authors. Theoretical computations are discussed within the context of clinical observations. Study Design/Materials and Methods A Monte Carlo model is used to examine volumetric heat production, fluence rate, and temperature profiles in blood vessels at 1,064 and 532 nm wavelengths with various beam diameters, vessel diameters, and pulse durations. Results Clinical observations, Monte Carlo results, and a review of the literature suggest that longer wavelengths and longer pulses durations favor vessel contraction over intraluminal thrombosis. Monte Carlo simulations show that longer wavelengths are more likely to uniformly heat the vessel compared to highly absorbing wavelengths. Methemoglobin production causes deeply penetrating wavelengths to generate more volumetric heat for the same input radiant exposure. Conclusions Clinical observations and models support the role of long wavelengths and long pulses in optimal clearance of most leg telangiectasias. Lasers Surg. Med. 36:105–116, 2005. © 2005 Wiley‐Liss, Inc.
doi_str_mv 10.1002/lsm.20141
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67439239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19428676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3921-3c0fabdafda77928a1dcf7d99ac8d962746f5caa456bac9c046eaa5f796cc1e3</originalsourceid><addsrcrecordid>eNqFkM1PAjEQxRujEUQP_gNmTyYeFtr9aLfeDBEwQTRKYuKlGbqzUt0PbBeV_94VUE_G07xkfu9N5hFyzGiXURr0cld0A8oitkPajEruS0bZLmlT1uiEyqBFDpx7ppSGARX7pMViQSPGkza5HYND69UWoS6wrL0q83J88t7QlO7cu52vnNGQewXqOZTGFc6DMvXqOVYW6_VKV6UzKVqoTaMOyV4GucOj7eyQ6eBy2h_545vhVf9i7OtQBswPNc1glkKWghAySIClOhOplKCTVPJARDyLNUAU8xloqWnEESDOhORaMww75HQTu7DV6xJdrQrjNOY5lFgtneIiau6E8l-QyShIuOANeLYBta2cs5iphTUF2JViVH3VrJqa1brmhj3Zhi5nBaa_5LbXBuhtgHeT4-rvJDW-v_6O9DcO42r8-HGAfWl-CUWsHiZDlSTDwZ14HKlJ-AkkD5eu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19428676</pqid></control><display><type>article</type><title>Laser treatment of leg veins: Physical mechanisms and theoretical considerations</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ross, Edward Victor ; Domankevitz, Yacov</creator><creatorcontrib>Ross, Edward Victor ; Domankevitz, Yacov</creatorcontrib><description>Background and Objectives A discussion of laser treatment of leg veins is based on a review of the literature, theoretical analysis, and the clinical experiences of the authors. Theoretical computations are discussed within the context of clinical observations. Study Design/Materials and Methods A Monte Carlo model is used to examine volumetric heat production, fluence rate, and temperature profiles in blood vessels at 1,064 and 532 nm wavelengths with various beam diameters, vessel diameters, and pulse durations. Results Clinical observations, Monte Carlo results, and a review of the literature suggest that longer wavelengths and longer pulses durations favor vessel contraction over intraluminal thrombosis. Monte Carlo simulations show that longer wavelengths are more likely to uniformly heat the vessel compared to highly absorbing wavelengths. Methemoglobin production causes deeply penetrating wavelengths to generate more volumetric heat for the same input radiant exposure. Conclusions Clinical observations and models support the role of long wavelengths and long pulses in optimal clearance of most leg telangiectasias. Lasers Surg. Med. 36:105–116, 2005. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 0196-8092</identifier><identifier>EISSN: 1096-9101</identifier><identifier>DOI: 10.1002/lsm.20141</identifier><identifier>PMID: 15704168</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Humans ; laser ; leg ; Leg - blood supply ; light ; Low-Level Light Therapy - methods ; mechanism ; Monte Carlo Method ; Patient Simulation ; Sensitivity and Specificity ; telangiectasia ; Telangiectasis - pathology ; Telangiectasis - radiotherapy ; Varicose Veins - pathology ; Varicose Veins - radiotherapy</subject><ispartof>Lasers in surgery and medicine, 2005-02, Vol.36 (2), p.105-116</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><rights>(c) 2005 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3921-3c0fabdafda77928a1dcf7d99ac8d962746f5caa456bac9c046eaa5f796cc1e3</citedby><cites>FETCH-LOGICAL-c3921-3c0fabdafda77928a1dcf7d99ac8d962746f5caa456bac9c046eaa5f796cc1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flsm.20141$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flsm.20141$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15704168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ross, Edward Victor</creatorcontrib><creatorcontrib>Domankevitz, Yacov</creatorcontrib><title>Laser treatment of leg veins: Physical mechanisms and theoretical considerations</title><title>Lasers in surgery and medicine</title><addtitle>Lasers Surg. Med</addtitle><description>Background and Objectives A discussion of laser treatment of leg veins is based on a review of the literature, theoretical analysis, and the clinical experiences of the authors. Theoretical computations are discussed within the context of clinical observations. Study Design/Materials and Methods A Monte Carlo model is used to examine volumetric heat production, fluence rate, and temperature profiles in blood vessels at 1,064 and 532 nm wavelengths with various beam diameters, vessel diameters, and pulse durations. Results Clinical observations, Monte Carlo results, and a review of the literature suggest that longer wavelengths and longer pulses durations favor vessel contraction over intraluminal thrombosis. Monte Carlo simulations show that longer wavelengths are more likely to uniformly heat the vessel compared to highly absorbing wavelengths. Methemoglobin production causes deeply penetrating wavelengths to generate more volumetric heat for the same input radiant exposure. Conclusions Clinical observations and models support the role of long wavelengths and long pulses in optimal clearance of most leg telangiectasias. Lasers Surg. Med. 36:105–116, 2005. © 2005 Wiley‐Liss, Inc.</description><subject>Humans</subject><subject>laser</subject><subject>leg</subject><subject>Leg - blood supply</subject><subject>light</subject><subject>Low-Level Light Therapy - methods</subject><subject>mechanism</subject><subject>Monte Carlo Method</subject><subject>Patient Simulation</subject><subject>Sensitivity and Specificity</subject><subject>telangiectasia</subject><subject>Telangiectasis - pathology</subject><subject>Telangiectasis - radiotherapy</subject><subject>Varicose Veins - pathology</subject><subject>Varicose Veins - radiotherapy</subject><issn>0196-8092</issn><issn>1096-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1PAjEQxRujEUQP_gNmTyYeFtr9aLfeDBEwQTRKYuKlGbqzUt0PbBeV_94VUE_G07xkfu9N5hFyzGiXURr0cld0A8oitkPajEruS0bZLmlT1uiEyqBFDpx7ppSGARX7pMViQSPGkza5HYND69UWoS6wrL0q83J88t7QlO7cu52vnNGQewXqOZTGFc6DMvXqOVYW6_VKV6UzKVqoTaMOyV4GucOj7eyQ6eBy2h_545vhVf9i7OtQBswPNc1glkKWghAySIClOhOplKCTVPJARDyLNUAU8xloqWnEESDOhORaMww75HQTu7DV6xJdrQrjNOY5lFgtneIiau6E8l-QyShIuOANeLYBta2cs5iphTUF2JViVH3VrJqa1brmhj3Zhi5nBaa_5LbXBuhtgHeT4-rvJDW-v_6O9DcO42r8-HGAfWl-CUWsHiZDlSTDwZ14HKlJ-AkkD5eu</recordid><startdate>200502</startdate><enddate>200502</enddate><creator>Ross, Edward Victor</creator><creator>Domankevitz, Yacov</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200502</creationdate><title>Laser treatment of leg veins: Physical mechanisms and theoretical considerations</title><author>Ross, Edward Victor ; Domankevitz, Yacov</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3921-3c0fabdafda77928a1dcf7d99ac8d962746f5caa456bac9c046eaa5f796cc1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Humans</topic><topic>laser</topic><topic>leg</topic><topic>Leg - blood supply</topic><topic>light</topic><topic>Low-Level Light Therapy - methods</topic><topic>mechanism</topic><topic>Monte Carlo Method</topic><topic>Patient Simulation</topic><topic>Sensitivity and Specificity</topic><topic>telangiectasia</topic><topic>Telangiectasis - pathology</topic><topic>Telangiectasis - radiotherapy</topic><topic>Varicose Veins - pathology</topic><topic>Varicose Veins - radiotherapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, Edward Victor</creatorcontrib><creatorcontrib>Domankevitz, Yacov</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Lasers in surgery and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, Edward Victor</au><au>Domankevitz, Yacov</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser treatment of leg veins: Physical mechanisms and theoretical considerations</atitle><jtitle>Lasers in surgery and medicine</jtitle><addtitle>Lasers Surg. Med</addtitle><date>2005-02</date><risdate>2005</risdate><volume>36</volume><issue>2</issue><spage>105</spage><epage>116</epage><pages>105-116</pages><issn>0196-8092</issn><eissn>1096-9101</eissn><abstract>Background and Objectives A discussion of laser treatment of leg veins is based on a review of the literature, theoretical analysis, and the clinical experiences of the authors. Theoretical computations are discussed within the context of clinical observations. Study Design/Materials and Methods A Monte Carlo model is used to examine volumetric heat production, fluence rate, and temperature profiles in blood vessels at 1,064 and 532 nm wavelengths with various beam diameters, vessel diameters, and pulse durations. Results Clinical observations, Monte Carlo results, and a review of the literature suggest that longer wavelengths and longer pulses durations favor vessel contraction over intraluminal thrombosis. Monte Carlo simulations show that longer wavelengths are more likely to uniformly heat the vessel compared to highly absorbing wavelengths. Methemoglobin production causes deeply penetrating wavelengths to generate more volumetric heat for the same input radiant exposure. Conclusions Clinical observations and models support the role of long wavelengths and long pulses in optimal clearance of most leg telangiectasias. Lasers Surg. Med. 36:105–116, 2005. © 2005 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15704168</pmid><doi>10.1002/lsm.20141</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-8092
ispartof Lasers in surgery and medicine, 2005-02, Vol.36 (2), p.105-116
issn 0196-8092
1096-9101
language eng
recordid cdi_proquest_miscellaneous_67439239
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Humans
laser
leg
Leg - blood supply
light
Low-Level Light Therapy - methods
mechanism
Monte Carlo Method
Patient Simulation
Sensitivity and Specificity
telangiectasia
Telangiectasis - pathology
Telangiectasis - radiotherapy
Varicose Veins - pathology
Varicose Veins - radiotherapy
title Laser treatment of leg veins: Physical mechanisms and theoretical considerations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20treatment%20of%20leg%20veins:%20Physical%20mechanisms%20and%20theoretical%20considerations&rft.jtitle=Lasers%20in%20surgery%20and%20medicine&rft.au=Ross,%20Edward%20Victor&rft.date=2005-02&rft.volume=36&rft.issue=2&rft.spage=105&rft.epage=116&rft.pages=105-116&rft.issn=0196-8092&rft.eissn=1096-9101&rft_id=info:doi/10.1002/lsm.20141&rft_dat=%3Cproquest_cross%3E19428676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19428676&rft_id=info:pmid/15704168&rfr_iscdi=true