Soil emissivity and reflectance spectra measurements
We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2009-07, Vol.48 (19), p.3664-3670 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3670 |
---|---|
container_issue | 19 |
container_start_page | 3664 |
container_title | Applied Optics |
container_volume | 48 |
creator | Sobrino, José A Mattar, Cristian Pardo, Pablo Jiménez-Muñoz, Juan C Hook, Simon J Baldridge, Alice Ibañez, Rafael |
description | We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 microm with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer. |
doi_str_mv | 10.1364/AO.48.003664 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_67437337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67437337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-ae0a7d51dcd30b4fae3b5e17c80b491fc6fdf09c940350e321c733b53faa9c723</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMotlZ3rmVAcOXUZPKaLEvxBYUu1HVIMzcYmUdNMkL_vZEpuLoPPg7nHISuCV4SKtjDartk9RJjKgQ7QfOKcF5SIvgpmuP8LYWifIYuYvzKF2dKnqMZUVwSVZE5Ym-DbwvofIz-x6dDYfqmCOBasMn0Foq4z1swRQcmjgE66FO8RGfOtBGujnOBPp4e39cv5Wb7_LpebUpLiUylAWxkw0ljG4p3zBmgOw5E2jpfijgrXOOwsoplYxhoRaykGaHOGGVlRRfodtIdYvI6Wp_Aftqh77MlXVU5Mq15pu4mah-G7xFi0jmNhbY1PQxj1EIymnVlBu8n0IYhxhxS74PvTDhogvVfl3q11azWU5cZvznqjrsOmn_4WB79BRwdbj4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67437337</pqid></control><display><type>article</type><title>Soil emissivity and reflectance spectra measurements</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Sobrino, José A ; Mattar, Cristian ; Pardo, Pablo ; Jiménez-Muñoz, Juan C ; Hook, Simon J ; Baldridge, Alice ; Ibañez, Rafael</creator><creatorcontrib>Sobrino, José A ; Mattar, Cristian ; Pardo, Pablo ; Jiménez-Muñoz, Juan C ; Hook, Simon J ; Baldridge, Alice ; Ibañez, Rafael</creatorcontrib><description>We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 microm with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.</description><identifier>ISSN: 0003-6935</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.48.003664</identifier><identifier>PMID: 19571921</identifier><language>eng</language><publisher>United States</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; EMISSION ; EMISSIVITY ; ENVIRONMENTAL SCIENCES ; ERRORS ; FOURIER TRANSFORM SPECTROMETERS ; INFRARED SPECTROMETERS ; RADIOMETERS ; REFLECTION ; REMOTE SENSING ; SOILS ; SPECTRA ; SPECTROSCOPY ; X-RAY DIFFRACTION</subject><ispartof>Applied Optics, 2009-07, Vol.48 (19), p.3664-3670</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-ae0a7d51dcd30b4fae3b5e17c80b491fc6fdf09c940350e321c733b53faa9c723</citedby><cites>FETCH-LOGICAL-c317t-ae0a7d51dcd30b4fae3b5e17c80b491fc6fdf09c940350e321c733b53faa9c723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19571921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22036385$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sobrino, José A</creatorcontrib><creatorcontrib>Mattar, Cristian</creatorcontrib><creatorcontrib>Pardo, Pablo</creatorcontrib><creatorcontrib>Jiménez-Muñoz, Juan C</creatorcontrib><creatorcontrib>Hook, Simon J</creatorcontrib><creatorcontrib>Baldridge, Alice</creatorcontrib><creatorcontrib>Ibañez, Rafael</creatorcontrib><title>Soil emissivity and reflectance spectra measurements</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 microm with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>EMISSION</subject><subject>EMISSIVITY</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>ERRORS</subject><subject>FOURIER TRANSFORM SPECTROMETERS</subject><subject>INFRARED SPECTROMETERS</subject><subject>RADIOMETERS</subject><subject>REFLECTION</subject><subject>REMOTE SENSING</subject><subject>SOILS</subject><subject>SPECTRA</subject><subject>SPECTROSCOPY</subject><subject>X-RAY DIFFRACTION</subject><issn>0003-6935</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEUhYMotlZ3rmVAcOXUZPKaLEvxBYUu1HVIMzcYmUdNMkL_vZEpuLoPPg7nHISuCV4SKtjDartk9RJjKgQ7QfOKcF5SIvgpmuP8LYWifIYuYvzKF2dKnqMZUVwSVZE5Ym-DbwvofIz-x6dDYfqmCOBasMn0Foq4z1swRQcmjgE66FO8RGfOtBGujnOBPp4e39cv5Wb7_LpebUpLiUylAWxkw0ljG4p3zBmgOw5E2jpfijgrXOOwsoplYxhoRaykGaHOGGVlRRfodtIdYvI6Wp_Aftqh77MlXVU5Mq15pu4mah-G7xFi0jmNhbY1PQxj1EIymnVlBu8n0IYhxhxS74PvTDhogvVfl3q11azWU5cZvznqjrsOmn_4WB79BRwdbj4</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Sobrino, José A</creator><creator>Mattar, Cristian</creator><creator>Pardo, Pablo</creator><creator>Jiménez-Muñoz, Juan C</creator><creator>Hook, Simon J</creator><creator>Baldridge, Alice</creator><creator>Ibañez, Rafael</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20090701</creationdate><title>Soil emissivity and reflectance spectra measurements</title><author>Sobrino, José A ; Mattar, Cristian ; Pardo, Pablo ; Jiménez-Muñoz, Juan C ; Hook, Simon J ; Baldridge, Alice ; Ibañez, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-ae0a7d51dcd30b4fae3b5e17c80b491fc6fdf09c940350e321c733b53faa9c723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>EMISSION</topic><topic>EMISSIVITY</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>ERRORS</topic><topic>FOURIER TRANSFORM SPECTROMETERS</topic><topic>INFRARED SPECTROMETERS</topic><topic>RADIOMETERS</topic><topic>REFLECTION</topic><topic>REMOTE SENSING</topic><topic>SOILS</topic><topic>SPECTRA</topic><topic>SPECTROSCOPY</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sobrino, José A</creatorcontrib><creatorcontrib>Mattar, Cristian</creatorcontrib><creatorcontrib>Pardo, Pablo</creatorcontrib><creatorcontrib>Jiménez-Muñoz, Juan C</creatorcontrib><creatorcontrib>Hook, Simon J</creatorcontrib><creatorcontrib>Baldridge, Alice</creatorcontrib><creatorcontrib>Ibañez, Rafael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sobrino, José A</au><au>Mattar, Cristian</au><au>Pardo, Pablo</au><au>Jiménez-Muñoz, Juan C</au><au>Hook, Simon J</au><au>Baldridge, Alice</au><au>Ibañez, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil emissivity and reflectance spectra measurements</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>48</volume><issue>19</issue><spage>3664</spage><epage>3670</epage><pages>3664-3670</pages><issn>0003-6935</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 microm with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.</abstract><cop>United States</cop><pmid>19571921</pmid><doi>10.1364/AO.48.003664</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6935 |
ispartof | Applied Optics, 2009-07, Vol.48 (19), p.3664-3670 |
issn | 0003-6935 2155-3165 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_67437337 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS EMISSION EMISSIVITY ENVIRONMENTAL SCIENCES ERRORS FOURIER TRANSFORM SPECTROMETERS INFRARED SPECTROMETERS RADIOMETERS REFLECTION REMOTE SENSING SOILS SPECTRA SPECTROSCOPY X-RAY DIFFRACTION |
title | Soil emissivity and reflectance spectra measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil%20emissivity%20and%20reflectance%20spectra%20measurements&rft.jtitle=Applied%20Optics&rft.au=Sobrino,%20Jos%C3%A9%20A&rft.date=2009-07-01&rft.volume=48&rft.issue=19&rft.spage=3664&rft.epage=3670&rft.pages=3664-3670&rft.issn=0003-6935&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.48.003664&rft_dat=%3Cproquest_osti_%3E67437337%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67437337&rft_id=info:pmid/19571921&rfr_iscdi=true |