Soil emissivity and reflectance spectra measurements

We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2009-07, Vol.48 (19), p.3664-3670
Hauptverfasser: Sobrino, José A, Mattar, Cristian, Pardo, Pablo, Jiménez-Muñoz, Juan C, Hook, Simon J, Baldridge, Alice, Ibañez, Rafael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3670
container_issue 19
container_start_page 3664
container_title Applied Optics
container_volume 48
creator Sobrino, José A
Mattar, Cristian
Pardo, Pablo
Jiménez-Muñoz, Juan C
Hook, Simon J
Baldridge, Alice
Ibañez, Rafael
description We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 microm with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.
doi_str_mv 10.1364/AO.48.003664
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_67437337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67437337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-ae0a7d51dcd30b4fae3b5e17c80b491fc6fdf09c940350e321c733b53faa9c723</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMotlZ3rmVAcOXUZPKaLEvxBYUu1HVIMzcYmUdNMkL_vZEpuLoPPg7nHISuCV4SKtjDartk9RJjKgQ7QfOKcF5SIvgpmuP8LYWifIYuYvzKF2dKnqMZUVwSVZE5Ym-DbwvofIz-x6dDYfqmCOBasMn0Foq4z1swRQcmjgE66FO8RGfOtBGujnOBPp4e39cv5Wb7_LpebUpLiUylAWxkw0ljG4p3zBmgOw5E2jpfijgrXOOwsoplYxhoRaykGaHOGGVlRRfodtIdYvI6Wp_Aftqh77MlXVU5Mq15pu4mah-G7xFi0jmNhbY1PQxj1EIymnVlBu8n0IYhxhxS74PvTDhogvVfl3q11azWU5cZvznqjrsOmn_4WB79BRwdbj4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67437337</pqid></control><display><type>article</type><title>Soil emissivity and reflectance spectra measurements</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Sobrino, José A ; Mattar, Cristian ; Pardo, Pablo ; Jiménez-Muñoz, Juan C ; Hook, Simon J ; Baldridge, Alice ; Ibañez, Rafael</creator><creatorcontrib>Sobrino, José A ; Mattar, Cristian ; Pardo, Pablo ; Jiménez-Muñoz, Juan C ; Hook, Simon J ; Baldridge, Alice ; Ibañez, Rafael</creatorcontrib><description>We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 microm with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.</description><identifier>ISSN: 0003-6935</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.48.003664</identifier><identifier>PMID: 19571921</identifier><language>eng</language><publisher>United States</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; EMISSION ; EMISSIVITY ; ENVIRONMENTAL SCIENCES ; ERRORS ; FOURIER TRANSFORM SPECTROMETERS ; INFRARED SPECTROMETERS ; RADIOMETERS ; REFLECTION ; REMOTE SENSING ; SOILS ; SPECTRA ; SPECTROSCOPY ; X-RAY DIFFRACTION</subject><ispartof>Applied Optics, 2009-07, Vol.48 (19), p.3664-3670</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-ae0a7d51dcd30b4fae3b5e17c80b491fc6fdf09c940350e321c733b53faa9c723</citedby><cites>FETCH-LOGICAL-c317t-ae0a7d51dcd30b4fae3b5e17c80b491fc6fdf09c940350e321c733b53faa9c723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19571921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22036385$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sobrino, José A</creatorcontrib><creatorcontrib>Mattar, Cristian</creatorcontrib><creatorcontrib>Pardo, Pablo</creatorcontrib><creatorcontrib>Jiménez-Muñoz, Juan C</creatorcontrib><creatorcontrib>Hook, Simon J</creatorcontrib><creatorcontrib>Baldridge, Alice</creatorcontrib><creatorcontrib>Ibañez, Rafael</creatorcontrib><title>Soil emissivity and reflectance spectra measurements</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 microm with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>EMISSION</subject><subject>EMISSIVITY</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>ERRORS</subject><subject>FOURIER TRANSFORM SPECTROMETERS</subject><subject>INFRARED SPECTROMETERS</subject><subject>RADIOMETERS</subject><subject>REFLECTION</subject><subject>REMOTE SENSING</subject><subject>SOILS</subject><subject>SPECTRA</subject><subject>SPECTROSCOPY</subject><subject>X-RAY DIFFRACTION</subject><issn>0003-6935</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEUhYMotlZ3rmVAcOXUZPKaLEvxBYUu1HVIMzcYmUdNMkL_vZEpuLoPPg7nHISuCV4SKtjDartk9RJjKgQ7QfOKcF5SIvgpmuP8LYWifIYuYvzKF2dKnqMZUVwSVZE5Ym-DbwvofIz-x6dDYfqmCOBasMn0Foq4z1swRQcmjgE66FO8RGfOtBGujnOBPp4e39cv5Wb7_LpebUpLiUylAWxkw0ljG4p3zBmgOw5E2jpfijgrXOOwsoplYxhoRaykGaHOGGVlRRfodtIdYvI6Wp_Aftqh77MlXVU5Mq15pu4mah-G7xFi0jmNhbY1PQxj1EIymnVlBu8n0IYhxhxS74PvTDhogvVfl3q11azWU5cZvznqjrsOmn_4WB79BRwdbj4</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Sobrino, José A</creator><creator>Mattar, Cristian</creator><creator>Pardo, Pablo</creator><creator>Jiménez-Muñoz, Juan C</creator><creator>Hook, Simon J</creator><creator>Baldridge, Alice</creator><creator>Ibañez, Rafael</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20090701</creationdate><title>Soil emissivity and reflectance spectra measurements</title><author>Sobrino, José A ; Mattar, Cristian ; Pardo, Pablo ; Jiménez-Muñoz, Juan C ; Hook, Simon J ; Baldridge, Alice ; Ibañez, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-ae0a7d51dcd30b4fae3b5e17c80b491fc6fdf09c940350e321c733b53faa9c723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>EMISSION</topic><topic>EMISSIVITY</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>ERRORS</topic><topic>FOURIER TRANSFORM SPECTROMETERS</topic><topic>INFRARED SPECTROMETERS</topic><topic>RADIOMETERS</topic><topic>REFLECTION</topic><topic>REMOTE SENSING</topic><topic>SOILS</topic><topic>SPECTRA</topic><topic>SPECTROSCOPY</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sobrino, José A</creatorcontrib><creatorcontrib>Mattar, Cristian</creatorcontrib><creatorcontrib>Pardo, Pablo</creatorcontrib><creatorcontrib>Jiménez-Muñoz, Juan C</creatorcontrib><creatorcontrib>Hook, Simon J</creatorcontrib><creatorcontrib>Baldridge, Alice</creatorcontrib><creatorcontrib>Ibañez, Rafael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sobrino, José A</au><au>Mattar, Cristian</au><au>Pardo, Pablo</au><au>Jiménez-Muñoz, Juan C</au><au>Hook, Simon J</au><au>Baldridge, Alice</au><au>Ibañez, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil emissivity and reflectance spectra measurements</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>48</volume><issue>19</issue><spage>3664</spage><epage>3670</epage><pages>3664-3670</pages><issn>0003-6935</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 microm with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.</abstract><cop>United States</cop><pmid>19571921</pmid><doi>10.1364/AO.48.003664</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6935
ispartof Applied Optics, 2009-07, Vol.48 (19), p.3664-3670
issn 0003-6935
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_67437337
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
EMISSION
EMISSIVITY
ENVIRONMENTAL SCIENCES
ERRORS
FOURIER TRANSFORM SPECTROMETERS
INFRARED SPECTROMETERS
RADIOMETERS
REFLECTION
REMOTE SENSING
SOILS
SPECTRA
SPECTROSCOPY
X-RAY DIFFRACTION
title Soil emissivity and reflectance spectra measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil%20emissivity%20and%20reflectance%20spectra%20measurements&rft.jtitle=Applied%20Optics&rft.au=Sobrino,%20Jos%C3%A9%20A&rft.date=2009-07-01&rft.volume=48&rft.issue=19&rft.spage=3664&rft.epage=3670&rft.pages=3664-3670&rft.issn=0003-6935&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.48.003664&rft_dat=%3Cproquest_osti_%3E67437337%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67437337&rft_id=info:pmid/19571921&rfr_iscdi=true