The dyf-3 Gene Encodes a Novel Protein Required for Sensory Cilium Formation in Caenorhabditis elegans

Ciliated neurons in animals are important for the reception of environmental stimuli. To understand the mechanism of cilium morphogenesis in Caenorhabditis elegans, we analyzed dyf-3 mutants that are defective in uptake of a fluorescent dye and abnormal in sensory cilium structure. Expression of gre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2005-02, Vol.346 (3), p.677-687
Hauptverfasser: Murayama, Takashi, Toh, Yoshihiro, Ohshima, Yasumi, Koga, Makoto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ciliated neurons in animals are important for the reception of environmental stimuli. To understand the mechanism of cilium morphogenesis in Caenorhabditis elegans, we analyzed dyf-3 mutants that are defective in uptake of a fluorescent dye and abnormal in sensory cilium structure. Expression of green fluorescent protein in sensory neurons of a dyf-3 mutant revealed that the mutant has stunted cilia and abnormal posterior projections in some sensory neurons. The dyf-3 gene encodes three proteins with different N-terminals. The largest DYF-3 protein has 404 amino acid residues that are 38% identical with those of a predicted human protein of unknown function. Expression of a functional dyf-3∷gfp fusion gene is detected in 26 chemosensory neurons, including six IL2 neurons, eight pairs of amphid neurons (ASE, ADF, ASG, ASH, ASI, ASJ, ASK and ADL) and two pairs of phasmid neurons (PHA and PHB). Expression of a dyf-3 cDNA in specific neurons of dyf-3 animals indicated that dyf-3 acts cell-autonomously for fluorescent dye uptake. Reduction of dyf-3∷gfp expression in a daf-19 mutant suggests that dyf-3 expression is regulated by DAF-19 transcription factor, and DYF-3 may be involved in the intraflagellar transport system.
ISSN:0022-2836
1089-8638
DOI:10.1016/j.jmb.2004.12.005