Single-Molecule Fluorescence Imaging of Peptide Binding to Supported Lipid Bilayers

Single-molecule fluorescence imaging techniques have been adapted to the quantitative characterization of peptide-binding to lipid bilayers. Peptide−membrane interactions are important in therapeutics, diagnostics, and membrane permeation and for understanding of the structure and function of membra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2009-07, Vol.81 (13), p.5130-5138
Hauptverfasser: Fox, Christopher B, Wayment, Joshua R, Myers, Grant A, Endicott, Scott K, Harris, Joel M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5138
container_issue 13
container_start_page 5130
container_title Analytical chemistry (Washington)
container_volume 81
creator Fox, Christopher B
Wayment, Joshua R
Myers, Grant A
Endicott, Scott K
Harris, Joel M
description Single-molecule fluorescence imaging techniques have been adapted to the quantitative characterization of peptide-binding to lipid bilayers. Peptide−membrane interactions are important in therapeutics, diagnostics, and membrane permeation and for understanding of the structure and function of membrane-bound proteins. Total-internal reflection fluorescence (TIRF) imaging is capable of determining membrane-binding equilibrium constants through the reliable counting of individual peptide molecules in order to report their surface density in the membrane. The residence times of the individual molecules in the membrane can also be determined and the rates of unbinding determined from a histogram of residence times. A combination of the unbinding kinetics and the equilibrium constant allows the binding rate of a peptide to the membrane also to be reported. We apply this method to characterize the lipid membrane affinity of glucagon-like peptide-1 (GLP-1), a 30-residue membrane-active peptide that is involved in glycemic control. Using single-molecule TIRF imaging, we have measured the affiliation of GLP-1 with a supported, phospholipid bilayer and determined its binding equilibrium constant. Two rates of dissociation were observed, suggesting strongly and weakly bound states of the peptide. The rate of membrane association was much slower than diffusion-controlled, indicating a significant kinetic barrier to membrane binding. The data were interpreted using a heterogeneous, surface-reaction model analogous to electron-transfer kinetics at an electrode. To our knowledge, these results are the first example of using single-molecule counting to quantify peptide−lipid bilayer binding equilibria and kinetics.
doi_str_mv 10.1021/ac9007682
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67431279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1777619321</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-bb20ca54a20f66fcb458d881a513846d1864ec7498e77c53b9b298be85f3d4ac3</originalsourceid><addsrcrecordid>eNpl0F1LwzAUBuAgipvTC_-AFEHBi-pJ0jbppYofg4nC9Lqk6emoZE1N2ov9ezM2NtCrQM7DOS8vIecUbikweqd0DiAyyQ7ImKYM4kxKdkjGAMBjJgBG5MT7bwBKgWbHZETzRALP5ZjM5027MBi_WYN6MBg9m8E69BpbjdF0qRZhHtk6-sCubyqMHpq2Wn_1NpoPXWddj1U0a7qmCiOjVuj8KTmqlfF4tn0n5Ov56fPxNZ69v0wf72ex4gL6uCwZaJUmikGdZbUuk1RWUlKVUi6TrKIyS1CLJJcohE55mZcslyXKtOZVojSfkOvN3s7ZnwF9XyybENwY1aIdfJGJhFMm8gAv_8BvO7g2ZCsYFeFkStOAbjZIO-u9w7roXLNUblVQKNY1F7uag73YLhzKJVZ7ue01gKstUF4rUzvV6sbvHGMgBRd075T2-1D_D_4CVuiOuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217881515</pqid></control><display><type>article</type><title>Single-Molecule Fluorescence Imaging of Peptide Binding to Supported Lipid Bilayers</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Fox, Christopher B ; Wayment, Joshua R ; Myers, Grant A ; Endicott, Scott K ; Harris, Joel M</creator><creatorcontrib>Fox, Christopher B ; Wayment, Joshua R ; Myers, Grant A ; Endicott, Scott K ; Harris, Joel M</creatorcontrib><description>Single-molecule fluorescence imaging techniques have been adapted to the quantitative characterization of peptide-binding to lipid bilayers. Peptide−membrane interactions are important in therapeutics, diagnostics, and membrane permeation and for understanding of the structure and function of membrane-bound proteins. Total-internal reflection fluorescence (TIRF) imaging is capable of determining membrane-binding equilibrium constants through the reliable counting of individual peptide molecules in order to report their surface density in the membrane. The residence times of the individual molecules in the membrane can also be determined and the rates of unbinding determined from a histogram of residence times. A combination of the unbinding kinetics and the equilibrium constant allows the binding rate of a peptide to the membrane also to be reported. We apply this method to characterize the lipid membrane affinity of glucagon-like peptide-1 (GLP-1), a 30-residue membrane-active peptide that is involved in glycemic control. Using single-molecule TIRF imaging, we have measured the affiliation of GLP-1 with a supported, phospholipid bilayer and determined its binding equilibrium constant. Two rates of dissociation were observed, suggesting strongly and weakly bound states of the peptide. The rate of membrane association was much slower than diffusion-controlled, indicating a significant kinetic barrier to membrane binding. The data were interpreted using a heterogeneous, surface-reaction model analogous to electron-transfer kinetics at an electrode. To our knowledge, these results are the first example of using single-molecule counting to quantify peptide−lipid bilayer binding equilibria and kinetics.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac9007682</identifier><identifier>PMID: 19480398</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Amino Acid Sequence ; Analytical chemistry ; Binding Sites ; Chemistry ; Exact sciences and technology ; Fluorescence ; Fluorescent Dyes - chemistry ; Glucagon-Like Peptide 1 - analysis ; Glucagon-Like Peptide 1 - chemistry ; Kinetics ; Lipid Bilayers - chemistry ; Lipids ; Membranes ; Microscopy, Fluorescence - methods ; Molecular Sequence Data ; Molecules ; Peptides ; Protein Binding ; Spectrometric and optical methods ; Staining and Labeling</subject><ispartof>Analytical chemistry (Washington), 2009-07, Vol.81 (13), p.5130-5138</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Jul 1, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-bb20ca54a20f66fcb458d881a513846d1864ec7498e77c53b9b298be85f3d4ac3</citedby><cites>FETCH-LOGICAL-a370t-bb20ca54a20f66fcb458d881a513846d1864ec7498e77c53b9b298be85f3d4ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac9007682$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac9007682$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22087371$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19480398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fox, Christopher B</creatorcontrib><creatorcontrib>Wayment, Joshua R</creatorcontrib><creatorcontrib>Myers, Grant A</creatorcontrib><creatorcontrib>Endicott, Scott K</creatorcontrib><creatorcontrib>Harris, Joel M</creatorcontrib><title>Single-Molecule Fluorescence Imaging of Peptide Binding to Supported Lipid Bilayers</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Single-molecule fluorescence imaging techniques have been adapted to the quantitative characterization of peptide-binding to lipid bilayers. Peptide−membrane interactions are important in therapeutics, diagnostics, and membrane permeation and for understanding of the structure and function of membrane-bound proteins. Total-internal reflection fluorescence (TIRF) imaging is capable of determining membrane-binding equilibrium constants through the reliable counting of individual peptide molecules in order to report their surface density in the membrane. The residence times of the individual molecules in the membrane can also be determined and the rates of unbinding determined from a histogram of residence times. A combination of the unbinding kinetics and the equilibrium constant allows the binding rate of a peptide to the membrane also to be reported. We apply this method to characterize the lipid membrane affinity of glucagon-like peptide-1 (GLP-1), a 30-residue membrane-active peptide that is involved in glycemic control. Using single-molecule TIRF imaging, we have measured the affiliation of GLP-1 with a supported, phospholipid bilayer and determined its binding equilibrium constant. Two rates of dissociation were observed, suggesting strongly and weakly bound states of the peptide. The rate of membrane association was much slower than diffusion-controlled, indicating a significant kinetic barrier to membrane binding. The data were interpreted using a heterogeneous, surface-reaction model analogous to electron-transfer kinetics at an electrode. To our knowledge, these results are the first example of using single-molecule counting to quantify peptide−lipid bilayer binding equilibria and kinetics.</description><subject>Amino Acid Sequence</subject><subject>Analytical chemistry</subject><subject>Binding Sites</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Glucagon-Like Peptide 1 - analysis</subject><subject>Glucagon-Like Peptide 1 - chemistry</subject><subject>Kinetics</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>Peptides</subject><subject>Protein Binding</subject><subject>Spectrometric and optical methods</subject><subject>Staining and Labeling</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0F1LwzAUBuAgipvTC_-AFEHBi-pJ0jbppYofg4nC9Lqk6emoZE1N2ov9ezM2NtCrQM7DOS8vIecUbikweqd0DiAyyQ7ImKYM4kxKdkjGAMBjJgBG5MT7bwBKgWbHZETzRALP5ZjM5027MBi_WYN6MBg9m8E69BpbjdF0qRZhHtk6-sCubyqMHpq2Wn_1NpoPXWddj1U0a7qmCiOjVuj8KTmqlfF4tn0n5Ov56fPxNZ69v0wf72ex4gL6uCwZaJUmikGdZbUuk1RWUlKVUi6TrKIyS1CLJJcohE55mZcslyXKtOZVojSfkOvN3s7ZnwF9XyybENwY1aIdfJGJhFMm8gAv_8BvO7g2ZCsYFeFkStOAbjZIO-u9w7roXLNUblVQKNY1F7uag73YLhzKJVZ7ue01gKstUF4rUzvV6sbvHGMgBRd075T2-1D_D_4CVuiOuQ</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Fox, Christopher B</creator><creator>Wayment, Joshua R</creator><creator>Myers, Grant A</creator><creator>Endicott, Scott K</creator><creator>Harris, Joel M</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20090701</creationdate><title>Single-Molecule Fluorescence Imaging of Peptide Binding to Supported Lipid Bilayers</title><author>Fox, Christopher B ; Wayment, Joshua R ; Myers, Grant A ; Endicott, Scott K ; Harris, Joel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-bb20ca54a20f66fcb458d881a513846d1864ec7498e77c53b9b298be85f3d4ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Analytical chemistry</topic><topic>Binding Sites</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Glucagon-Like Peptide 1 - analysis</topic><topic>Glucagon-Like Peptide 1 - chemistry</topic><topic>Kinetics</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>Peptides</topic><topic>Protein Binding</topic><topic>Spectrometric and optical methods</topic><topic>Staining and Labeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fox, Christopher B</creatorcontrib><creatorcontrib>Wayment, Joshua R</creatorcontrib><creatorcontrib>Myers, Grant A</creatorcontrib><creatorcontrib>Endicott, Scott K</creatorcontrib><creatorcontrib>Harris, Joel M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fox, Christopher B</au><au>Wayment, Joshua R</au><au>Myers, Grant A</au><au>Endicott, Scott K</au><au>Harris, Joel M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Molecule Fluorescence Imaging of Peptide Binding to Supported Lipid Bilayers</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>81</volume><issue>13</issue><spage>5130</spage><epage>5138</epage><pages>5130-5138</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Single-molecule fluorescence imaging techniques have been adapted to the quantitative characterization of peptide-binding to lipid bilayers. Peptide−membrane interactions are important in therapeutics, diagnostics, and membrane permeation and for understanding of the structure and function of membrane-bound proteins. Total-internal reflection fluorescence (TIRF) imaging is capable of determining membrane-binding equilibrium constants through the reliable counting of individual peptide molecules in order to report their surface density in the membrane. The residence times of the individual molecules in the membrane can also be determined and the rates of unbinding determined from a histogram of residence times. A combination of the unbinding kinetics and the equilibrium constant allows the binding rate of a peptide to the membrane also to be reported. We apply this method to characterize the lipid membrane affinity of glucagon-like peptide-1 (GLP-1), a 30-residue membrane-active peptide that is involved in glycemic control. Using single-molecule TIRF imaging, we have measured the affiliation of GLP-1 with a supported, phospholipid bilayer and determined its binding equilibrium constant. Two rates of dissociation were observed, suggesting strongly and weakly bound states of the peptide. The rate of membrane association was much slower than diffusion-controlled, indicating a significant kinetic barrier to membrane binding. The data were interpreted using a heterogeneous, surface-reaction model analogous to electron-transfer kinetics at an electrode. To our knowledge, these results are the first example of using single-molecule counting to quantify peptide−lipid bilayer binding equilibria and kinetics.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19480398</pmid><doi>10.1021/ac9007682</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2009-07, Vol.81 (13), p.5130-5138
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_67431279
source MEDLINE; American Chemical Society Journals
subjects Amino Acid Sequence
Analytical chemistry
Binding Sites
Chemistry
Exact sciences and technology
Fluorescence
Fluorescent Dyes - chemistry
Glucagon-Like Peptide 1 - analysis
Glucagon-Like Peptide 1 - chemistry
Kinetics
Lipid Bilayers - chemistry
Lipids
Membranes
Microscopy, Fluorescence - methods
Molecular Sequence Data
Molecules
Peptides
Protein Binding
Spectrometric and optical methods
Staining and Labeling
title Single-Molecule Fluorescence Imaging of Peptide Binding to Supported Lipid Bilayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Molecule%20Fluorescence%20Imaging%20of%20Peptide%20Binding%20to%20Supported%20Lipid%20Bilayers&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Fox,%20Christopher%20B&rft.date=2009-07-01&rft.volume=81&rft.issue=13&rft.spage=5130&rft.epage=5138&rft.pages=5130-5138&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac9007682&rft_dat=%3Cproquest_cross%3E1777619321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217881515&rft_id=info:pmid/19480398&rfr_iscdi=true