Single-Molecule Fluorescence Imaging of Peptide Binding to Supported Lipid Bilayers
Single-molecule fluorescence imaging techniques have been adapted to the quantitative characterization of peptide-binding to lipid bilayers. Peptide−membrane interactions are important in therapeutics, diagnostics, and membrane permeation and for understanding of the structure and function of membra...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2009-07, Vol.81 (13), p.5130-5138 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5138 |
---|---|
container_issue | 13 |
container_start_page | 5130 |
container_title | Analytical chemistry (Washington) |
container_volume | 81 |
creator | Fox, Christopher B Wayment, Joshua R Myers, Grant A Endicott, Scott K Harris, Joel M |
description | Single-molecule fluorescence imaging techniques have been adapted to the quantitative characterization of peptide-binding to lipid bilayers. Peptide−membrane interactions are important in therapeutics, diagnostics, and membrane permeation and for understanding of the structure and function of membrane-bound proteins. Total-internal reflection fluorescence (TIRF) imaging is capable of determining membrane-binding equilibrium constants through the reliable counting of individual peptide molecules in order to report their surface density in the membrane. The residence times of the individual molecules in the membrane can also be determined and the rates of unbinding determined from a histogram of residence times. A combination of the unbinding kinetics and the equilibrium constant allows the binding rate of a peptide to the membrane also to be reported. We apply this method to characterize the lipid membrane affinity of glucagon-like peptide-1 (GLP-1), a 30-residue membrane-active peptide that is involved in glycemic control. Using single-molecule TIRF imaging, we have measured the affiliation of GLP-1 with a supported, phospholipid bilayer and determined its binding equilibrium constant. Two rates of dissociation were observed, suggesting strongly and weakly bound states of the peptide. The rate of membrane association was much slower than diffusion-controlled, indicating a significant kinetic barrier to membrane binding. The data were interpreted using a heterogeneous, surface-reaction model analogous to electron-transfer kinetics at an electrode. To our knowledge, these results are the first example of using single-molecule counting to quantify peptide−lipid bilayer binding equilibria and kinetics. |
doi_str_mv | 10.1021/ac9007682 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67431279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1777619321</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-bb20ca54a20f66fcb458d881a513846d1864ec7498e77c53b9b298be85f3d4ac3</originalsourceid><addsrcrecordid>eNpl0F1LwzAUBuAgipvTC_-AFEHBi-pJ0jbppYofg4nC9Lqk6emoZE1N2ov9ezM2NtCrQM7DOS8vIecUbikweqd0DiAyyQ7ImKYM4kxKdkjGAMBjJgBG5MT7bwBKgWbHZETzRALP5ZjM5027MBi_WYN6MBg9m8E69BpbjdF0qRZhHtk6-sCubyqMHpq2Wn_1NpoPXWddj1U0a7qmCiOjVuj8KTmqlfF4tn0n5Ov56fPxNZ69v0wf72ex4gL6uCwZaJUmikGdZbUuk1RWUlKVUi6TrKIyS1CLJJcohE55mZcslyXKtOZVojSfkOvN3s7ZnwF9XyybENwY1aIdfJGJhFMm8gAv_8BvO7g2ZCsYFeFkStOAbjZIO-u9w7roXLNUblVQKNY1F7uag73YLhzKJVZ7ue01gKstUF4rUzvV6sbvHGMgBRd075T2-1D_D_4CVuiOuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217881515</pqid></control><display><type>article</type><title>Single-Molecule Fluorescence Imaging of Peptide Binding to Supported Lipid Bilayers</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Fox, Christopher B ; Wayment, Joshua R ; Myers, Grant A ; Endicott, Scott K ; Harris, Joel M</creator><creatorcontrib>Fox, Christopher B ; Wayment, Joshua R ; Myers, Grant A ; Endicott, Scott K ; Harris, Joel M</creatorcontrib><description>Single-molecule fluorescence imaging techniques have been adapted to the quantitative characterization of peptide-binding to lipid bilayers. Peptide−membrane interactions are important in therapeutics, diagnostics, and membrane permeation and for understanding of the structure and function of membrane-bound proteins. Total-internal reflection fluorescence (TIRF) imaging is capable of determining membrane-binding equilibrium constants through the reliable counting of individual peptide molecules in order to report their surface density in the membrane. The residence times of the individual molecules in the membrane can also be determined and the rates of unbinding determined from a histogram of residence times. A combination of the unbinding kinetics and the equilibrium constant allows the binding rate of a peptide to the membrane also to be reported. We apply this method to characterize the lipid membrane affinity of glucagon-like peptide-1 (GLP-1), a 30-residue membrane-active peptide that is involved in glycemic control. Using single-molecule TIRF imaging, we have measured the affiliation of GLP-1 with a supported, phospholipid bilayer and determined its binding equilibrium constant. Two rates of dissociation were observed, suggesting strongly and weakly bound states of the peptide. The rate of membrane association was much slower than diffusion-controlled, indicating a significant kinetic barrier to membrane binding. The data were interpreted using a heterogeneous, surface-reaction model analogous to electron-transfer kinetics at an electrode. To our knowledge, these results are the first example of using single-molecule counting to quantify peptide−lipid bilayer binding equilibria and kinetics.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac9007682</identifier><identifier>PMID: 19480398</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Amino Acid Sequence ; Analytical chemistry ; Binding Sites ; Chemistry ; Exact sciences and technology ; Fluorescence ; Fluorescent Dyes - chemistry ; Glucagon-Like Peptide 1 - analysis ; Glucagon-Like Peptide 1 - chemistry ; Kinetics ; Lipid Bilayers - chemistry ; Lipids ; Membranes ; Microscopy, Fluorescence - methods ; Molecular Sequence Data ; Molecules ; Peptides ; Protein Binding ; Spectrometric and optical methods ; Staining and Labeling</subject><ispartof>Analytical chemistry (Washington), 2009-07, Vol.81 (13), p.5130-5138</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Jul 1, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-bb20ca54a20f66fcb458d881a513846d1864ec7498e77c53b9b298be85f3d4ac3</citedby><cites>FETCH-LOGICAL-a370t-bb20ca54a20f66fcb458d881a513846d1864ec7498e77c53b9b298be85f3d4ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac9007682$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac9007682$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22087371$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19480398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fox, Christopher B</creatorcontrib><creatorcontrib>Wayment, Joshua R</creatorcontrib><creatorcontrib>Myers, Grant A</creatorcontrib><creatorcontrib>Endicott, Scott K</creatorcontrib><creatorcontrib>Harris, Joel M</creatorcontrib><title>Single-Molecule Fluorescence Imaging of Peptide Binding to Supported Lipid Bilayers</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Single-molecule fluorescence imaging techniques have been adapted to the quantitative characterization of peptide-binding to lipid bilayers. Peptide−membrane interactions are important in therapeutics, diagnostics, and membrane permeation and for understanding of the structure and function of membrane-bound proteins. Total-internal reflection fluorescence (TIRF) imaging is capable of determining membrane-binding equilibrium constants through the reliable counting of individual peptide molecules in order to report their surface density in the membrane. The residence times of the individual molecules in the membrane can also be determined and the rates of unbinding determined from a histogram of residence times. A combination of the unbinding kinetics and the equilibrium constant allows the binding rate of a peptide to the membrane also to be reported. We apply this method to characterize the lipid membrane affinity of glucagon-like peptide-1 (GLP-1), a 30-residue membrane-active peptide that is involved in glycemic control. Using single-molecule TIRF imaging, we have measured the affiliation of GLP-1 with a supported, phospholipid bilayer and determined its binding equilibrium constant. Two rates of dissociation were observed, suggesting strongly and weakly bound states of the peptide. The rate of membrane association was much slower than diffusion-controlled, indicating a significant kinetic barrier to membrane binding. The data were interpreted using a heterogeneous, surface-reaction model analogous to electron-transfer kinetics at an electrode. To our knowledge, these results are the first example of using single-molecule counting to quantify peptide−lipid bilayer binding equilibria and kinetics.</description><subject>Amino Acid Sequence</subject><subject>Analytical chemistry</subject><subject>Binding Sites</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Glucagon-Like Peptide 1 - analysis</subject><subject>Glucagon-Like Peptide 1 - chemistry</subject><subject>Kinetics</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>Peptides</subject><subject>Protein Binding</subject><subject>Spectrometric and optical methods</subject><subject>Staining and Labeling</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0F1LwzAUBuAgipvTC_-AFEHBi-pJ0jbppYofg4nC9Lqk6emoZE1N2ov9ezM2NtCrQM7DOS8vIecUbikweqd0DiAyyQ7ImKYM4kxKdkjGAMBjJgBG5MT7bwBKgWbHZETzRALP5ZjM5027MBi_WYN6MBg9m8E69BpbjdF0qRZhHtk6-sCubyqMHpq2Wn_1NpoPXWddj1U0a7qmCiOjVuj8KTmqlfF4tn0n5Ov56fPxNZ69v0wf72ex4gL6uCwZaJUmikGdZbUuk1RWUlKVUi6TrKIyS1CLJJcohE55mZcslyXKtOZVojSfkOvN3s7ZnwF9XyybENwY1aIdfJGJhFMm8gAv_8BvO7g2ZCsYFeFkStOAbjZIO-u9w7roXLNUblVQKNY1F7uag73YLhzKJVZ7ue01gKstUF4rUzvV6sbvHGMgBRd075T2-1D_D_4CVuiOuQ</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Fox, Christopher B</creator><creator>Wayment, Joshua R</creator><creator>Myers, Grant A</creator><creator>Endicott, Scott K</creator><creator>Harris, Joel M</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20090701</creationdate><title>Single-Molecule Fluorescence Imaging of Peptide Binding to Supported Lipid Bilayers</title><author>Fox, Christopher B ; Wayment, Joshua R ; Myers, Grant A ; Endicott, Scott K ; Harris, Joel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-bb20ca54a20f66fcb458d881a513846d1864ec7498e77c53b9b298be85f3d4ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Analytical chemistry</topic><topic>Binding Sites</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Glucagon-Like Peptide 1 - analysis</topic><topic>Glucagon-Like Peptide 1 - chemistry</topic><topic>Kinetics</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>Peptides</topic><topic>Protein Binding</topic><topic>Spectrometric and optical methods</topic><topic>Staining and Labeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fox, Christopher B</creatorcontrib><creatorcontrib>Wayment, Joshua R</creatorcontrib><creatorcontrib>Myers, Grant A</creatorcontrib><creatorcontrib>Endicott, Scott K</creatorcontrib><creatorcontrib>Harris, Joel M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fox, Christopher B</au><au>Wayment, Joshua R</au><au>Myers, Grant A</au><au>Endicott, Scott K</au><au>Harris, Joel M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Molecule Fluorescence Imaging of Peptide Binding to Supported Lipid Bilayers</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>81</volume><issue>13</issue><spage>5130</spage><epage>5138</epage><pages>5130-5138</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Single-molecule fluorescence imaging techniques have been adapted to the quantitative characterization of peptide-binding to lipid bilayers. Peptide−membrane interactions are important in therapeutics, diagnostics, and membrane permeation and for understanding of the structure and function of membrane-bound proteins. Total-internal reflection fluorescence (TIRF) imaging is capable of determining membrane-binding equilibrium constants through the reliable counting of individual peptide molecules in order to report their surface density in the membrane. The residence times of the individual molecules in the membrane can also be determined and the rates of unbinding determined from a histogram of residence times. A combination of the unbinding kinetics and the equilibrium constant allows the binding rate of a peptide to the membrane also to be reported. We apply this method to characterize the lipid membrane affinity of glucagon-like peptide-1 (GLP-1), a 30-residue membrane-active peptide that is involved in glycemic control. Using single-molecule TIRF imaging, we have measured the affiliation of GLP-1 with a supported, phospholipid bilayer and determined its binding equilibrium constant. Two rates of dissociation were observed, suggesting strongly and weakly bound states of the peptide. The rate of membrane association was much slower than diffusion-controlled, indicating a significant kinetic barrier to membrane binding. The data were interpreted using a heterogeneous, surface-reaction model analogous to electron-transfer kinetics at an electrode. To our knowledge, these results are the first example of using single-molecule counting to quantify peptide−lipid bilayer binding equilibria and kinetics.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19480398</pmid><doi>10.1021/ac9007682</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2009-07, Vol.81 (13), p.5130-5138 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_67431279 |
source | MEDLINE; American Chemical Society Journals |
subjects | Amino Acid Sequence Analytical chemistry Binding Sites Chemistry Exact sciences and technology Fluorescence Fluorescent Dyes - chemistry Glucagon-Like Peptide 1 - analysis Glucagon-Like Peptide 1 - chemistry Kinetics Lipid Bilayers - chemistry Lipids Membranes Microscopy, Fluorescence - methods Molecular Sequence Data Molecules Peptides Protein Binding Spectrometric and optical methods Staining and Labeling |
title | Single-Molecule Fluorescence Imaging of Peptide Binding to Supported Lipid Bilayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Molecule%20Fluorescence%20Imaging%20of%20Peptide%20Binding%20to%20Supported%20Lipid%20Bilayers&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Fox,%20Christopher%20B&rft.date=2009-07-01&rft.volume=81&rft.issue=13&rft.spage=5130&rft.epage=5138&rft.pages=5130-5138&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac9007682&rft_dat=%3Cproquest_cross%3E1777619321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217881515&rft_id=info:pmid/19480398&rfr_iscdi=true |