Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms
Diatoms and other chromalveolates are among the dominant phytoplankters in the world's oceans. Endosymbiosis was essential to the success of chromalveolates, and it appears that the ancestral plastid in this group had a red algal origin via an ancient secondary endosymbiosis. However, recent an...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2009-06, Vol.324 (5935), p.1724-1726 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1726 |
---|---|
container_issue | 5935 |
container_start_page | 1724 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 324 |
creator | Moustafa, Ahmed Beszteri, Bánk Maier, Uwe G. Bowler, Chris Valentin, Klaus Bhattacharya, Debashish |
description | Diatoms and other chromalveolates are among the dominant phytoplankters in the world's oceans. Endosymbiosis was essential to the success of chromalveolates, and it appears that the ancestral plastid in this group had a red algal origin via an ancient secondary endosymbiosis. However, recent analyses have turned up a handful of nuclear genes in chromalveolates that are of green algal derivation. Using a genome-wide approach to estimate the "green" contribution to diatoms, we identified >1700 green gene transfers, constituting 16% of the diatom nuclear coding potential. These genes were probably introduced into diatoms and other chromalveolates from a cryptic endosymbiont related to prasinophyte-like green algae. Chromalveolates appear to have recruited genes from the two major existing algal groups to forge a highly successful, species-rich prtist lineage. |
doi_str_mv | 10.1126/science.1172983 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67423432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20536512</jstor_id><sourcerecordid>20536512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-cd3d142a8128d7e69933f729ab39b9494c23eb46fc298aa9205e35c15a729b813</originalsourceid><addsrcrecordid>eNqFkUFP4zAQhS3ECgrLmRMoQlpu2doe24lvoC6FlSrBYTlHjuNIrpK4eNJD__26agQSl56s8XzzNG8eIdeM_maMqzla7wbrUlFwXcIJmTGqZa45hVMyoxRUXtJCnpMLxDWlqafhjJwzLaWSjM7Iw7MbQu9ttgxh3EQ_jJiFNjPZIu42Y_p_6wyOvsmehibgrq99QI-ZH7I_3oyhx5_kR2s6dFfTe0nel0__Fi_56vX57-JxlVtF5ZjbBhomuCkZL5vCKa0B2rSzqUHXWmhhObhaqNYmH8YkA9KBtEyaBNUlg0tyf9DdxPCxdThWvUfrus4MLmyxUoXgIIAfBYUCJiQrj4IgOeWFkEdBTlUJAHvw7hu4Dts4pLNUnIHUStC9kfkBsjEgRtdW6ey9ibuK0WofajWFWk2hponbSXZb96754qcUE_BrAgxa07XRDNbjJ8dZwYTie8c3B26NY4hffSoh6XD4D_IUshY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213596401</pqid></control><display><type>article</type><title>Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Science Magazine</source><creator>Moustafa, Ahmed ; Beszteri, Bánk ; Maier, Uwe G. ; Bowler, Chris ; Valentin, Klaus ; Bhattacharya, Debashish</creator><creatorcontrib>Moustafa, Ahmed ; Beszteri, Bánk ; Maier, Uwe G. ; Bowler, Chris ; Valentin, Klaus ; Bhattacharya, Debashish</creatorcontrib><description>Diatoms and other chromalveolates are among the dominant phytoplankters in the world's oceans. Endosymbiosis was essential to the success of chromalveolates, and it appears that the ancestral plastid in this group had a red algal origin via an ancient secondary endosymbiosis. However, recent analyses have turned up a handful of nuclear genes in chromalveolates that are of green algal derivation. Using a genome-wide approach to estimate the "green" contribution to diatoms, we identified >1700 green gene transfers, constituting 16% of the diatom nuclear coding potential. These genes were probably introduced into diatoms and other chromalveolates from a cryptic endosymbiont related to prasinophyte-like green algae. Chromalveolates appear to have recruited genes from the two major existing algal groups to forge a highly successful, species-rich prtist lineage.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1172983</identifier><identifier>PMID: 19556510</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Algae ; Animal and plant ecology ; Animal, plant and microbial ecology ; Autoecology ; Bacillariophyceae ; Biological and medical sciences ; Biological Evolution ; Cell Nucleus - genetics ; Cellular biology ; Chlorophyta ; Chlorophyta - classification ; Chlorophyta - genetics ; Chlorophyta - physiology ; Diatoms ; Diatoms - classification ; Diatoms - genetics ; Diatoms - physiology ; endosymbionts ; Endosymbiosis ; Eukaryotes ; Fundamental and applied biological sciences. Psychology ; Gene Transfer, Horizontal ; Genes ; Genetics of eukaryotes. Biological and molecular evolution ; Genome ; Genomes ; Genomics ; Green algae ; Monophyly ; oceans ; Phylogenetics ; Phylogeny ; Plants ; Plants and fungi ; Plastids ; Plastids - genetics ; protists ; Rhodophyta - classification ; Rhodophyta - genetics ; Rhodophyta - physiology ; Symbiosis ; Taxa</subject><ispartof>Science (American Association for the Advancement of Science), 2009-06, Vol.324 (5935), p.1724-1726</ispartof><rights>Copyright 2009 American Association for the Advancement of Science</rights><rights>2009 INIST-CNRS</rights><rights>Copyright © 2009, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-cd3d142a8128d7e69933f729ab39b9494c23eb46fc298aa9205e35c15a729b813</citedby><cites>FETCH-LOGICAL-c605t-cd3d142a8128d7e69933f729ab39b9494c23eb46fc298aa9205e35c15a729b813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20536512$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20536512$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21714628$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19556510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moustafa, Ahmed</creatorcontrib><creatorcontrib>Beszteri, Bánk</creatorcontrib><creatorcontrib>Maier, Uwe G.</creatorcontrib><creatorcontrib>Bowler, Chris</creatorcontrib><creatorcontrib>Valentin, Klaus</creatorcontrib><creatorcontrib>Bhattacharya, Debashish</creatorcontrib><title>Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Diatoms and other chromalveolates are among the dominant phytoplankters in the world's oceans. Endosymbiosis was essential to the success of chromalveolates, and it appears that the ancestral plastid in this group had a red algal origin via an ancient secondary endosymbiosis. However, recent analyses have turned up a handful of nuclear genes in chromalveolates that are of green algal derivation. Using a genome-wide approach to estimate the "green" contribution to diatoms, we identified >1700 green gene transfers, constituting 16% of the diatom nuclear coding potential. These genes were probably introduced into diatoms and other chromalveolates from a cryptic endosymbiont related to prasinophyte-like green algae. Chromalveolates appear to have recruited genes from the two major existing algal groups to forge a highly successful, species-rich prtist lineage.</description><subject>Algae</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Autoecology</subject><subject>Bacillariophyceae</subject><subject>Biological and medical sciences</subject><subject>Biological Evolution</subject><subject>Cell Nucleus - genetics</subject><subject>Cellular biology</subject><subject>Chlorophyta</subject><subject>Chlorophyta - classification</subject><subject>Chlorophyta - genetics</subject><subject>Chlorophyta - physiology</subject><subject>Diatoms</subject><subject>Diatoms - classification</subject><subject>Diatoms - genetics</subject><subject>Diatoms - physiology</subject><subject>endosymbionts</subject><subject>Endosymbiosis</subject><subject>Eukaryotes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Transfer, Horizontal</subject><subject>Genes</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Green algae</subject><subject>Monophyly</subject><subject>oceans</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Plants</subject><subject>Plants and fungi</subject><subject>Plastids</subject><subject>Plastids - genetics</subject><subject>protists</subject><subject>Rhodophyta - classification</subject><subject>Rhodophyta - genetics</subject><subject>Rhodophyta - physiology</subject><subject>Symbiosis</subject><subject>Taxa</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFP4zAQhS3ECgrLmRMoQlpu2doe24lvoC6FlSrBYTlHjuNIrpK4eNJD__26agQSl56s8XzzNG8eIdeM_maMqzla7wbrUlFwXcIJmTGqZa45hVMyoxRUXtJCnpMLxDWlqafhjJwzLaWSjM7Iw7MbQu9ttgxh3EQ_jJiFNjPZIu42Y_p_6wyOvsmehibgrq99QI-ZH7I_3oyhx5_kR2s6dFfTe0nel0__Fi_56vX57-JxlVtF5ZjbBhomuCkZL5vCKa0B2rSzqUHXWmhhObhaqNYmH8YkA9KBtEyaBNUlg0tyf9DdxPCxdThWvUfrus4MLmyxUoXgIIAfBYUCJiQrj4IgOeWFkEdBTlUJAHvw7hu4Dts4pLNUnIHUStC9kfkBsjEgRtdW6ey9ibuK0WofajWFWk2hponbSXZb96754qcUE_BrAgxa07XRDNbjJ8dZwYTie8c3B26NY4hffSoh6XD4D_IUshY</recordid><startdate>20090626</startdate><enddate>20090626</enddate><creator>Moustafa, Ahmed</creator><creator>Beszteri, Bánk</creator><creator>Maier, Uwe G.</creator><creator>Bowler, Chris</creator><creator>Valentin, Klaus</creator><creator>Bhattacharya, Debashish</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope></search><sort><creationdate>20090626</creationdate><title>Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms</title><author>Moustafa, Ahmed ; Beszteri, Bánk ; Maier, Uwe G. ; Bowler, Chris ; Valentin, Klaus ; Bhattacharya, Debashish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-cd3d142a8128d7e69933f729ab39b9494c23eb46fc298aa9205e35c15a729b813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algae</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Autoecology</topic><topic>Bacillariophyceae</topic><topic>Biological and medical sciences</topic><topic>Biological Evolution</topic><topic>Cell Nucleus - genetics</topic><topic>Cellular biology</topic><topic>Chlorophyta</topic><topic>Chlorophyta - classification</topic><topic>Chlorophyta - genetics</topic><topic>Chlorophyta - physiology</topic><topic>Diatoms</topic><topic>Diatoms - classification</topic><topic>Diatoms - genetics</topic><topic>Diatoms - physiology</topic><topic>endosymbionts</topic><topic>Endosymbiosis</topic><topic>Eukaryotes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Transfer, Horizontal</topic><topic>Genes</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Green algae</topic><topic>Monophyly</topic><topic>oceans</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Plants</topic><topic>Plants and fungi</topic><topic>Plastids</topic><topic>Plastids - genetics</topic><topic>protists</topic><topic>Rhodophyta - classification</topic><topic>Rhodophyta - genetics</topic><topic>Rhodophyta - physiology</topic><topic>Symbiosis</topic><topic>Taxa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moustafa, Ahmed</creatorcontrib><creatorcontrib>Beszteri, Bánk</creatorcontrib><creatorcontrib>Maier, Uwe G.</creatorcontrib><creatorcontrib>Bowler, Chris</creatorcontrib><creatorcontrib>Valentin, Klaus</creatorcontrib><creatorcontrib>Bhattacharya, Debashish</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moustafa, Ahmed</au><au>Beszteri, Bánk</au><au>Maier, Uwe G.</au><au>Bowler, Chris</au><au>Valentin, Klaus</au><au>Bhattacharya, Debashish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2009-06-26</date><risdate>2009</risdate><volume>324</volume><issue>5935</issue><spage>1724</spage><epage>1726</epage><pages>1724-1726</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Diatoms and other chromalveolates are among the dominant phytoplankters in the world's oceans. Endosymbiosis was essential to the success of chromalveolates, and it appears that the ancestral plastid in this group had a red algal origin via an ancient secondary endosymbiosis. However, recent analyses have turned up a handful of nuclear genes in chromalveolates that are of green algal derivation. Using a genome-wide approach to estimate the "green" contribution to diatoms, we identified >1700 green gene transfers, constituting 16% of the diatom nuclear coding potential. These genes were probably introduced into diatoms and other chromalveolates from a cryptic endosymbiont related to prasinophyte-like green algae. Chromalveolates appear to have recruited genes from the two major existing algal groups to forge a highly successful, species-rich prtist lineage.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>19556510</pmid><doi>10.1126/science.1172983</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2009-06, Vol.324 (5935), p.1724-1726 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_67423432 |
source | Jstor Complete Legacy; MEDLINE; Science Magazine |
subjects | Algae Animal and plant ecology Animal, plant and microbial ecology Autoecology Bacillariophyceae Biological and medical sciences Biological Evolution Cell Nucleus - genetics Cellular biology Chlorophyta Chlorophyta - classification Chlorophyta - genetics Chlorophyta - physiology Diatoms Diatoms - classification Diatoms - genetics Diatoms - physiology endosymbionts Endosymbiosis Eukaryotes Fundamental and applied biological sciences. Psychology Gene Transfer, Horizontal Genes Genetics of eukaryotes. Biological and molecular evolution Genome Genomes Genomics Green algae Monophyly oceans Phylogenetics Phylogeny Plants Plants and fungi Plastids Plastids - genetics protists Rhodophyta - classification Rhodophyta - genetics Rhodophyta - physiology Symbiosis Taxa |
title | Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20Footprints%20of%20a%20Cryptic%20Plastid%20Endosymbiosis%20in%20Diatoms&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Moustafa,%20Ahmed&rft.date=2009-06-26&rft.volume=324&rft.issue=5935&rft.spage=1724&rft.epage=1726&rft.pages=1724-1726&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1172983&rft_dat=%3Cjstor_proqu%3E20536512%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213596401&rft_id=info:pmid/19556510&rft_jstor_id=20536512&rfr_iscdi=true |