Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms

Diatoms and other chromalveolates are among the dominant phytoplankters in the world's oceans. Endosymbiosis was essential to the success of chromalveolates, and it appears that the ancestral plastid in this group had a red algal origin via an ancient secondary endosymbiosis. However, recent an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2009-06, Vol.324 (5935), p.1724-1726
Hauptverfasser: Moustafa, Ahmed, Beszteri, Bánk, Maier, Uwe G., Bowler, Chris, Valentin, Klaus, Bhattacharya, Debashish
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1726
container_issue 5935
container_start_page 1724
container_title Science (American Association for the Advancement of Science)
container_volume 324
creator Moustafa, Ahmed
Beszteri, Bánk
Maier, Uwe G.
Bowler, Chris
Valentin, Klaus
Bhattacharya, Debashish
description Diatoms and other chromalveolates are among the dominant phytoplankters in the world's oceans. Endosymbiosis was essential to the success of chromalveolates, and it appears that the ancestral plastid in this group had a red algal origin via an ancient secondary endosymbiosis. However, recent analyses have turned up a handful of nuclear genes in chromalveolates that are of green algal derivation. Using a genome-wide approach to estimate the "green" contribution to diatoms, we identified >1700 green gene transfers, constituting 16% of the diatom nuclear coding potential. These genes were probably introduced into diatoms and other chromalveolates from a cryptic endosymbiont related to prasinophyte-like green algae. Chromalveolates appear to have recruited genes from the two major existing algal groups to forge a highly successful, species-rich prtist lineage.
doi_str_mv 10.1126/science.1172983
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67423432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20536512</jstor_id><sourcerecordid>20536512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-cd3d142a8128d7e69933f729ab39b9494c23eb46fc298aa9205e35c15a729b813</originalsourceid><addsrcrecordid>eNqFkUFP4zAQhS3ECgrLmRMoQlpu2doe24lvoC6FlSrBYTlHjuNIrpK4eNJD__26agQSl56s8XzzNG8eIdeM_maMqzla7wbrUlFwXcIJmTGqZa45hVMyoxRUXtJCnpMLxDWlqafhjJwzLaWSjM7Iw7MbQu9ttgxh3EQ_jJiFNjPZIu42Y_p_6wyOvsmehibgrq99QI-ZH7I_3oyhx5_kR2s6dFfTe0nel0__Fi_56vX57-JxlVtF5ZjbBhomuCkZL5vCKa0B2rSzqUHXWmhhObhaqNYmH8YkA9KBtEyaBNUlg0tyf9DdxPCxdThWvUfrus4MLmyxUoXgIIAfBYUCJiQrj4IgOeWFkEdBTlUJAHvw7hu4Dts4pLNUnIHUStC9kfkBsjEgRtdW6ey9ibuK0WofajWFWk2hponbSXZb96754qcUE_BrAgxa07XRDNbjJ8dZwYTie8c3B26NY4hffSoh6XD4D_IUshY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213596401</pqid></control><display><type>article</type><title>Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Science Magazine</source><creator>Moustafa, Ahmed ; Beszteri, Bánk ; Maier, Uwe G. ; Bowler, Chris ; Valentin, Klaus ; Bhattacharya, Debashish</creator><creatorcontrib>Moustafa, Ahmed ; Beszteri, Bánk ; Maier, Uwe G. ; Bowler, Chris ; Valentin, Klaus ; Bhattacharya, Debashish</creatorcontrib><description>Diatoms and other chromalveolates are among the dominant phytoplankters in the world's oceans. Endosymbiosis was essential to the success of chromalveolates, and it appears that the ancestral plastid in this group had a red algal origin via an ancient secondary endosymbiosis. However, recent analyses have turned up a handful of nuclear genes in chromalveolates that are of green algal derivation. Using a genome-wide approach to estimate the "green" contribution to diatoms, we identified &gt;1700 green gene transfers, constituting 16% of the diatom nuclear coding potential. These genes were probably introduced into diatoms and other chromalveolates from a cryptic endosymbiont related to prasinophyte-like green algae. Chromalveolates appear to have recruited genes from the two major existing algal groups to forge a highly successful, species-rich prtist lineage.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1172983</identifier><identifier>PMID: 19556510</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Algae ; Animal and plant ecology ; Animal, plant and microbial ecology ; Autoecology ; Bacillariophyceae ; Biological and medical sciences ; Biological Evolution ; Cell Nucleus - genetics ; Cellular biology ; Chlorophyta ; Chlorophyta - classification ; Chlorophyta - genetics ; Chlorophyta - physiology ; Diatoms ; Diatoms - classification ; Diatoms - genetics ; Diatoms - physiology ; endosymbionts ; Endosymbiosis ; Eukaryotes ; Fundamental and applied biological sciences. Psychology ; Gene Transfer, Horizontal ; Genes ; Genetics of eukaryotes. Biological and molecular evolution ; Genome ; Genomes ; Genomics ; Green algae ; Monophyly ; oceans ; Phylogenetics ; Phylogeny ; Plants ; Plants and fungi ; Plastids ; Plastids - genetics ; protists ; Rhodophyta - classification ; Rhodophyta - genetics ; Rhodophyta - physiology ; Symbiosis ; Taxa</subject><ispartof>Science (American Association for the Advancement of Science), 2009-06, Vol.324 (5935), p.1724-1726</ispartof><rights>Copyright 2009 American Association for the Advancement of Science</rights><rights>2009 INIST-CNRS</rights><rights>Copyright © 2009, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-cd3d142a8128d7e69933f729ab39b9494c23eb46fc298aa9205e35c15a729b813</citedby><cites>FETCH-LOGICAL-c605t-cd3d142a8128d7e69933f729ab39b9494c23eb46fc298aa9205e35c15a729b813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20536512$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20536512$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21714628$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19556510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moustafa, Ahmed</creatorcontrib><creatorcontrib>Beszteri, Bánk</creatorcontrib><creatorcontrib>Maier, Uwe G.</creatorcontrib><creatorcontrib>Bowler, Chris</creatorcontrib><creatorcontrib>Valentin, Klaus</creatorcontrib><creatorcontrib>Bhattacharya, Debashish</creatorcontrib><title>Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Diatoms and other chromalveolates are among the dominant phytoplankters in the world's oceans. Endosymbiosis was essential to the success of chromalveolates, and it appears that the ancestral plastid in this group had a red algal origin via an ancient secondary endosymbiosis. However, recent analyses have turned up a handful of nuclear genes in chromalveolates that are of green algal derivation. Using a genome-wide approach to estimate the "green" contribution to diatoms, we identified &gt;1700 green gene transfers, constituting 16% of the diatom nuclear coding potential. These genes were probably introduced into diatoms and other chromalveolates from a cryptic endosymbiont related to prasinophyte-like green algae. Chromalveolates appear to have recruited genes from the two major existing algal groups to forge a highly successful, species-rich prtist lineage.</description><subject>Algae</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Autoecology</subject><subject>Bacillariophyceae</subject><subject>Biological and medical sciences</subject><subject>Biological Evolution</subject><subject>Cell Nucleus - genetics</subject><subject>Cellular biology</subject><subject>Chlorophyta</subject><subject>Chlorophyta - classification</subject><subject>Chlorophyta - genetics</subject><subject>Chlorophyta - physiology</subject><subject>Diatoms</subject><subject>Diatoms - classification</subject><subject>Diatoms - genetics</subject><subject>Diatoms - physiology</subject><subject>endosymbionts</subject><subject>Endosymbiosis</subject><subject>Eukaryotes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Transfer, Horizontal</subject><subject>Genes</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Green algae</subject><subject>Monophyly</subject><subject>oceans</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Plants</subject><subject>Plants and fungi</subject><subject>Plastids</subject><subject>Plastids - genetics</subject><subject>protists</subject><subject>Rhodophyta - classification</subject><subject>Rhodophyta - genetics</subject><subject>Rhodophyta - physiology</subject><subject>Symbiosis</subject><subject>Taxa</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFP4zAQhS3ECgrLmRMoQlpu2doe24lvoC6FlSrBYTlHjuNIrpK4eNJD__26agQSl56s8XzzNG8eIdeM_maMqzla7wbrUlFwXcIJmTGqZa45hVMyoxRUXtJCnpMLxDWlqafhjJwzLaWSjM7Iw7MbQu9ttgxh3EQ_jJiFNjPZIu42Y_p_6wyOvsmehibgrq99QI-ZH7I_3oyhx5_kR2s6dFfTe0nel0__Fi_56vX57-JxlVtF5ZjbBhomuCkZL5vCKa0B2rSzqUHXWmhhObhaqNYmH8YkA9KBtEyaBNUlg0tyf9DdxPCxdThWvUfrus4MLmyxUoXgIIAfBYUCJiQrj4IgOeWFkEdBTlUJAHvw7hu4Dts4pLNUnIHUStC9kfkBsjEgRtdW6ey9ibuK0WofajWFWk2hponbSXZb96754qcUE_BrAgxa07XRDNbjJ8dZwYTie8c3B26NY4hffSoh6XD4D_IUshY</recordid><startdate>20090626</startdate><enddate>20090626</enddate><creator>Moustafa, Ahmed</creator><creator>Beszteri, Bánk</creator><creator>Maier, Uwe G.</creator><creator>Bowler, Chris</creator><creator>Valentin, Klaus</creator><creator>Bhattacharya, Debashish</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope></search><sort><creationdate>20090626</creationdate><title>Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms</title><author>Moustafa, Ahmed ; Beszteri, Bánk ; Maier, Uwe G. ; Bowler, Chris ; Valentin, Klaus ; Bhattacharya, Debashish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-cd3d142a8128d7e69933f729ab39b9494c23eb46fc298aa9205e35c15a729b813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algae</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Autoecology</topic><topic>Bacillariophyceae</topic><topic>Biological and medical sciences</topic><topic>Biological Evolution</topic><topic>Cell Nucleus - genetics</topic><topic>Cellular biology</topic><topic>Chlorophyta</topic><topic>Chlorophyta - classification</topic><topic>Chlorophyta - genetics</topic><topic>Chlorophyta - physiology</topic><topic>Diatoms</topic><topic>Diatoms - classification</topic><topic>Diatoms - genetics</topic><topic>Diatoms - physiology</topic><topic>endosymbionts</topic><topic>Endosymbiosis</topic><topic>Eukaryotes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Transfer, Horizontal</topic><topic>Genes</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Green algae</topic><topic>Monophyly</topic><topic>oceans</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Plants</topic><topic>Plants and fungi</topic><topic>Plastids</topic><topic>Plastids - genetics</topic><topic>protists</topic><topic>Rhodophyta - classification</topic><topic>Rhodophyta - genetics</topic><topic>Rhodophyta - physiology</topic><topic>Symbiosis</topic><topic>Taxa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moustafa, Ahmed</creatorcontrib><creatorcontrib>Beszteri, Bánk</creatorcontrib><creatorcontrib>Maier, Uwe G.</creatorcontrib><creatorcontrib>Bowler, Chris</creatorcontrib><creatorcontrib>Valentin, Klaus</creatorcontrib><creatorcontrib>Bhattacharya, Debashish</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moustafa, Ahmed</au><au>Beszteri, Bánk</au><au>Maier, Uwe G.</au><au>Bowler, Chris</au><au>Valentin, Klaus</au><au>Bhattacharya, Debashish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2009-06-26</date><risdate>2009</risdate><volume>324</volume><issue>5935</issue><spage>1724</spage><epage>1726</epage><pages>1724-1726</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Diatoms and other chromalveolates are among the dominant phytoplankters in the world's oceans. Endosymbiosis was essential to the success of chromalveolates, and it appears that the ancestral plastid in this group had a red algal origin via an ancient secondary endosymbiosis. However, recent analyses have turned up a handful of nuclear genes in chromalveolates that are of green algal derivation. Using a genome-wide approach to estimate the "green" contribution to diatoms, we identified &gt;1700 green gene transfers, constituting 16% of the diatom nuclear coding potential. These genes were probably introduced into diatoms and other chromalveolates from a cryptic endosymbiont related to prasinophyte-like green algae. Chromalveolates appear to have recruited genes from the two major existing algal groups to forge a highly successful, species-rich prtist lineage.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>19556510</pmid><doi>10.1126/science.1172983</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2009-06, Vol.324 (5935), p.1724-1726
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_67423432
source Jstor Complete Legacy; MEDLINE; Science Magazine
subjects Algae
Animal and plant ecology
Animal, plant and microbial ecology
Autoecology
Bacillariophyceae
Biological and medical sciences
Biological Evolution
Cell Nucleus - genetics
Cellular biology
Chlorophyta
Chlorophyta - classification
Chlorophyta - genetics
Chlorophyta - physiology
Diatoms
Diatoms - classification
Diatoms - genetics
Diatoms - physiology
endosymbionts
Endosymbiosis
Eukaryotes
Fundamental and applied biological sciences. Psychology
Gene Transfer, Horizontal
Genes
Genetics of eukaryotes. Biological and molecular evolution
Genome
Genomes
Genomics
Green algae
Monophyly
oceans
Phylogenetics
Phylogeny
Plants
Plants and fungi
Plastids
Plastids - genetics
protists
Rhodophyta - classification
Rhodophyta - genetics
Rhodophyta - physiology
Symbiosis
Taxa
title Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20Footprints%20of%20a%20Cryptic%20Plastid%20Endosymbiosis%20in%20Diatoms&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Moustafa,%20Ahmed&rft.date=2009-06-26&rft.volume=324&rft.issue=5935&rft.spage=1724&rft.epage=1726&rft.pages=1724-1726&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1172983&rft_dat=%3Cjstor_proqu%3E20536512%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213596401&rft_id=info:pmid/19556510&rft_jstor_id=20536512&rfr_iscdi=true