Reduction of NO Adlayers on Pt(110) and Pt(111) in Acidic Media: Evidence for Adsorption Site-Specific Reduction
We present a combined in situ Fourier transform infrared reflection−absorption spectroscopy and voltammetric study of the reduction of saturated and subsaturated NO adlayers on Pt(111) and Pt(110) single-crystal surfaces in acidic media. The stripping voltammetry experiments and the associated evolu...
Gespeichert in:
Veröffentlicht in: | Langmuir 2005-02, Vol.21 (4), p.1448-1456 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a combined in situ Fourier transform infrared reflection−absorption spectroscopy and voltammetric study of the reduction of saturated and subsaturated NO adlayers on Pt(111) and Pt(110) single-crystal surfaces in acidic media. The stripping voltammetry experiments and the associated evolution of infrared spectra indicate that different features (peaks) observed in the voltammetric profile for the electrochemical reduction of NO adlayers on the surfaces considered are related to the reduction of NOads at different adsorption sites and not to different (consecutive) processes. More specifically, reduction of high- and intermediate-coverage (ca. 0.5−1 monolayers (ML)) NO adlayers on Pt(110) is accompanied by site switching from atop to bridge position, in agreement with the ultra-high-vacuum data. On Pt(111) linearly bonded (atop) NO and face-centered cubic 3-fold-hollow NO species coexist at high coverages (0.25−0.5 ML) and can be reduced consecutively and independently. On Pt(111) and Pt(110) electrodes, linearly bonded NO species are more reactive than multifold-bonded NO species. Both spectroscopic and voltammetric data indicate that ammonia is the main product of NOads reduction on the two surfaces examined. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la0475831 |