Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release
The use of chemical modifiers as radiosensitizers in combination with low-dose irradiation may increase the therapeutic effect on cancer by overcoming a high apoptotic threshold. Here, we showed that phytosphingosine treatment in combination with γ-radiation enhanced apoptotic cell death of radiatio...
Gespeichert in:
Veröffentlicht in: | Blood 2005-02, Vol.105 (4), p.1724-1733 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1733 |
---|---|
container_issue | 4 |
container_start_page | 1724 |
container_title | Blood |
container_volume | 105 |
creator | Park, Moon-Taek Kim, Min-Jung Kang, Young-Hee Choi, Soon-Young Lee, Jae-Hoon Choi, Jung-A Kang, Chang-Mo Cho, Chul-Koo Kang, Seongman Bae, Sangwoo Lee, Yun-Sil Chung, Hee Yong Lee, Su-Jae |
description | The use of chemical modifiers as radiosensitizers in combination with low-dose irradiation may increase the therapeutic effect on cancer by overcoming a high apoptotic threshold. Here, we showed that phytosphingosine treatment in combination with γ-radiation enhanced apoptotic cell death of radiation-resistant human T-cell lymphoma in a caspase-independent manner. Combination treatment induced an increase in intracellular reactive oxygen species (ROS) level, mitochondrial relocalization of B-cell lymphoma-2(Bcl-2)-associated X protein (Bax), poly-adenosine diphosphate (ADP)-ribose polymerase 1 (PARP-1) activation, and nuclear translocation of apoptosis-inducing factor (AIF). siRNA targeting of AIF effectively protected cells from the combination treatment-induced cell death. An antioxidant, N-acetyl-L-cysteine (NAC), inhibited Bax relocalization and AIF translocation but not PARP-1 activation. Moreover, transfection of Bax-siRNA significantly inhibited AIF translocation. Pretreatment of PARP-1 inhibitor, DPQ (3,4-dihydro-5-[4-(1-piperidinyl)-butoxy]-1(2H)-isoquinolinone), or PARP-1-siRNA also partially attenuated AIF translocation, whereas the same treatment did not affect intracellular ROS level and Bax redistribution. Taken together, these results demonstrate that enhancement of cell death of radiation-resistant cancer cells by phytosphingosine treatment in combination with γ-radiation is mediated by nuclear translocation of AIF, which is in turn mediated both by ROS-dependent Bax relocalization and ROS-independent PARP-1 activation. The molecular signaling pathways that we elucidated in this study may provide potential drug targets for radiation sensitization of cancers refractive to radiation therapy. (Blood. 2005;105:1724-1733) |
doi_str_mv | 10.1182/blood-2004-07-2938 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67399988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120459014</els_id><sourcerecordid>67399988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3438-5c8341fcdd078815561257883a08f0c1f86259151654aec561eca8d73d0ced533</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhBVggb2BnuI7jxJHYVBWFSpWK-FlbHvumMcrYwfaAyjPxkDidkWbHylfX3zm6OoeQlxzecq6ad9s5RscagJZBz5pBqEdkw2WjGEADj8kGADrWDj0_I89y_gHAW9HIp-SMy1Z10PEN-ft5ui8xL5MPdzH7gNQHauNu64MpPgb625eJ1sH_qQRNxvnDHsNkgsVMzRKXEou31OI8U4dmFYQTyhJmn4sJhdpVkh7ATMuU4v5uol9uvzKHCwaHFTHBUebDaXFxfUUTzmgyPidPRjNnfHF8z8n3qw_fLj-xm9uP15cXN8yKVigmrRItH61z0CvFpex4I-skDKgRLB9V18iBS97J1qCt32iNcr1wYNFJIc7Jm4PvkuLPPeaidz6vR5uAcZ9114thGKrhOWkOoE0x54SjXpLfmXSvOei1I_3QkV470tDrtaMqenV032936E6SYykVeH0ETLZmHlNNzecT1w1ty4eucu8PHNYsfnlMOluPNWHnE9qiXfT_u-Mf7hay7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67399988</pqid></control><display><type>article</type><title>Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Park, Moon-Taek ; Kim, Min-Jung ; Kang, Young-Hee ; Choi, Soon-Young ; Lee, Jae-Hoon ; Choi, Jung-A ; Kang, Chang-Mo ; Cho, Chul-Koo ; Kang, Seongman ; Bae, Sangwoo ; Lee, Yun-Sil ; Chung, Hee Yong ; Lee, Su-Jae</creator><creatorcontrib>Park, Moon-Taek ; Kim, Min-Jung ; Kang, Young-Hee ; Choi, Soon-Young ; Lee, Jae-Hoon ; Choi, Jung-A ; Kang, Chang-Mo ; Cho, Chul-Koo ; Kang, Seongman ; Bae, Sangwoo ; Lee, Yun-Sil ; Chung, Hee Yong ; Lee, Su-Jae</creatorcontrib><description>The use of chemical modifiers as radiosensitizers in combination with low-dose irradiation may increase the therapeutic effect on cancer by overcoming a high apoptotic threshold. Here, we showed that phytosphingosine treatment in combination with γ-radiation enhanced apoptotic cell death of radiation-resistant human T-cell lymphoma in a caspase-independent manner. Combination treatment induced an increase in intracellular reactive oxygen species (ROS) level, mitochondrial relocalization of B-cell lymphoma-2(Bcl-2)-associated X protein (Bax), poly-adenosine diphosphate (ADP)-ribose polymerase 1 (PARP-1) activation, and nuclear translocation of apoptosis-inducing factor (AIF). siRNA targeting of AIF effectively protected cells from the combination treatment-induced cell death. An antioxidant, N-acetyl-L-cysteine (NAC), inhibited Bax relocalization and AIF translocation but not PARP-1 activation. Moreover, transfection of Bax-siRNA significantly inhibited AIF translocation. Pretreatment of PARP-1 inhibitor, DPQ (3,4-dihydro-5-[4-(1-piperidinyl)-butoxy]-1(2H)-isoquinolinone), or PARP-1-siRNA also partially attenuated AIF translocation, whereas the same treatment did not affect intracellular ROS level and Bax redistribution. Taken together, these results demonstrate that enhancement of cell death of radiation-resistant cancer cells by phytosphingosine treatment in combination with γ-radiation is mediated by nuclear translocation of AIF, which is in turn mediated both by ROS-dependent Bax relocalization and ROS-independent PARP-1 activation. The molecular signaling pathways that we elucidated in this study may provide potential drug targets for radiation sensitization of cancers refractive to radiation therapy. (Blood. 2005;105:1724-1733)</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood-2004-07-2938</identifier><identifier>PMID: 15486061</identifier><language>eng</language><publisher>Washington, DC: Elsevier Inc</publisher><subject>Active Transport, Cell Nucleus - drug effects ; Active Transport, Cell Nucleus - radiation effects ; Antineoplastic agents ; Apoptosis - drug effects ; Apoptosis - radiation effects ; Apoptosis Inducing Factor ; bcl-2-Associated X Protein ; Biological and medical sciences ; Cell Nucleus - drug effects ; Cell Nucleus - metabolism ; Cell Nucleus - radiation effects ; Clone Cells ; Combined Modality Therapy ; Combined treatments (chemotherapy of immunotherapy associated with an other treatment) ; Enzyme Activation - drug effects ; Enzyme Activation - radiation effects ; Flavoproteins - metabolism ; Gamma Rays ; Humans ; Intracellular Membranes - drug effects ; Intracellular Membranes - metabolism ; Intracellular Membranes - radiation effects ; Jurkat Cells ; Medical sciences ; Membrane Potentials - drug effects ; Membrane Potentials - radiation effects ; Membrane Proteins - metabolism ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondria - radiation effects ; Pharmacology. Drug treatments ; Poly(ADP-ribose) Polymerases - metabolism ; Proto-Oncogene Proteins c-bcl-2 - metabolism ; Radiation Tolerance ; Reactive Oxygen Species - pharmacology ; Sphingosine - analogs & derivatives ; Sphingosine - pharmacology</subject><ispartof>Blood, 2005-02, Vol.105 (4), p.1724-1733</ispartof><rights>2005 American Society of Hematology</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3438-5c8341fcdd078815561257883a08f0c1f86259151654aec561eca8d73d0ced533</citedby><cites>FETCH-LOGICAL-c3438-5c8341fcdd078815561257883a08f0c1f86259151654aec561eca8d73d0ced533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16944196$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15486061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Moon-Taek</creatorcontrib><creatorcontrib>Kim, Min-Jung</creatorcontrib><creatorcontrib>Kang, Young-Hee</creatorcontrib><creatorcontrib>Choi, Soon-Young</creatorcontrib><creatorcontrib>Lee, Jae-Hoon</creatorcontrib><creatorcontrib>Choi, Jung-A</creatorcontrib><creatorcontrib>Kang, Chang-Mo</creatorcontrib><creatorcontrib>Cho, Chul-Koo</creatorcontrib><creatorcontrib>Kang, Seongman</creatorcontrib><creatorcontrib>Bae, Sangwoo</creatorcontrib><creatorcontrib>Lee, Yun-Sil</creatorcontrib><creatorcontrib>Chung, Hee Yong</creatorcontrib><creatorcontrib>Lee, Su-Jae</creatorcontrib><title>Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release</title><title>Blood</title><addtitle>Blood</addtitle><description>The use of chemical modifiers as radiosensitizers in combination with low-dose irradiation may increase the therapeutic effect on cancer by overcoming a high apoptotic threshold. Here, we showed that phytosphingosine treatment in combination with γ-radiation enhanced apoptotic cell death of radiation-resistant human T-cell lymphoma in a caspase-independent manner. Combination treatment induced an increase in intracellular reactive oxygen species (ROS) level, mitochondrial relocalization of B-cell lymphoma-2(Bcl-2)-associated X protein (Bax), poly-adenosine diphosphate (ADP)-ribose polymerase 1 (PARP-1) activation, and nuclear translocation of apoptosis-inducing factor (AIF). siRNA targeting of AIF effectively protected cells from the combination treatment-induced cell death. An antioxidant, N-acetyl-L-cysteine (NAC), inhibited Bax relocalization and AIF translocation but not PARP-1 activation. Moreover, transfection of Bax-siRNA significantly inhibited AIF translocation. Pretreatment of PARP-1 inhibitor, DPQ (3,4-dihydro-5-[4-(1-piperidinyl)-butoxy]-1(2H)-isoquinolinone), or PARP-1-siRNA also partially attenuated AIF translocation, whereas the same treatment did not affect intracellular ROS level and Bax redistribution. Taken together, these results demonstrate that enhancement of cell death of radiation-resistant cancer cells by phytosphingosine treatment in combination with γ-radiation is mediated by nuclear translocation of AIF, which is in turn mediated both by ROS-dependent Bax relocalization and ROS-independent PARP-1 activation. The molecular signaling pathways that we elucidated in this study may provide potential drug targets for radiation sensitization of cancers refractive to radiation therapy. (Blood. 2005;105:1724-1733)</description><subject>Active Transport, Cell Nucleus - drug effects</subject><subject>Active Transport, Cell Nucleus - radiation effects</subject><subject>Antineoplastic agents</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - radiation effects</subject><subject>Apoptosis Inducing Factor</subject><subject>bcl-2-Associated X Protein</subject><subject>Biological and medical sciences</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Nucleus - radiation effects</subject><subject>Clone Cells</subject><subject>Combined Modality Therapy</subject><subject>Combined treatments (chemotherapy of immunotherapy associated with an other treatment)</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Activation - radiation effects</subject><subject>Flavoproteins - metabolism</subject><subject>Gamma Rays</subject><subject>Humans</subject><subject>Intracellular Membranes - drug effects</subject><subject>Intracellular Membranes - metabolism</subject><subject>Intracellular Membranes - radiation effects</subject><subject>Jurkat Cells</subject><subject>Medical sciences</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - radiation effects</subject><subject>Membrane Proteins - metabolism</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - radiation effects</subject><subject>Pharmacology. Drug treatments</subject><subject>Poly(ADP-ribose) Polymerases - metabolism</subject><subject>Proto-Oncogene Proteins c-bcl-2 - metabolism</subject><subject>Radiation Tolerance</subject><subject>Reactive Oxygen Species - pharmacology</subject><subject>Sphingosine - analogs & derivatives</subject><subject>Sphingosine - pharmacology</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EokPhBVggb2BnuI7jxJHYVBWFSpWK-FlbHvumMcrYwfaAyjPxkDidkWbHylfX3zm6OoeQlxzecq6ad9s5RscagJZBz5pBqEdkw2WjGEADj8kGADrWDj0_I89y_gHAW9HIp-SMy1Z10PEN-ft5ui8xL5MPdzH7gNQHauNu64MpPgb625eJ1sH_qQRNxvnDHsNkgsVMzRKXEou31OI8U4dmFYQTyhJmn4sJhdpVkh7ATMuU4v5uol9uvzKHCwaHFTHBUebDaXFxfUUTzmgyPidPRjNnfHF8z8n3qw_fLj-xm9uP15cXN8yKVigmrRItH61z0CvFpex4I-skDKgRLB9V18iBS97J1qCt32iNcr1wYNFJIc7Jm4PvkuLPPeaidz6vR5uAcZ9114thGKrhOWkOoE0x54SjXpLfmXSvOei1I_3QkV470tDrtaMqenV032936E6SYykVeH0ETLZmHlNNzecT1w1ty4eucu8PHNYsfnlMOluPNWHnE9qiXfT_u-Mf7hay7Q</recordid><startdate>20050215</startdate><enddate>20050215</enddate><creator>Park, Moon-Taek</creator><creator>Kim, Min-Jung</creator><creator>Kang, Young-Hee</creator><creator>Choi, Soon-Young</creator><creator>Lee, Jae-Hoon</creator><creator>Choi, Jung-A</creator><creator>Kang, Chang-Mo</creator><creator>Cho, Chul-Koo</creator><creator>Kang, Seongman</creator><creator>Bae, Sangwoo</creator><creator>Lee, Yun-Sil</creator><creator>Chung, Hee Yong</creator><creator>Lee, Su-Jae</creator><general>Elsevier Inc</general><general>The Americain Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050215</creationdate><title>Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release</title><author>Park, Moon-Taek ; Kim, Min-Jung ; Kang, Young-Hee ; Choi, Soon-Young ; Lee, Jae-Hoon ; Choi, Jung-A ; Kang, Chang-Mo ; Cho, Chul-Koo ; Kang, Seongman ; Bae, Sangwoo ; Lee, Yun-Sil ; Chung, Hee Yong ; Lee, Su-Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3438-5c8341fcdd078815561257883a08f0c1f86259151654aec561eca8d73d0ced533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Active Transport, Cell Nucleus - drug effects</topic><topic>Active Transport, Cell Nucleus - radiation effects</topic><topic>Antineoplastic agents</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - radiation effects</topic><topic>Apoptosis Inducing Factor</topic><topic>bcl-2-Associated X Protein</topic><topic>Biological and medical sciences</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Nucleus - radiation effects</topic><topic>Clone Cells</topic><topic>Combined Modality Therapy</topic><topic>Combined treatments (chemotherapy of immunotherapy associated with an other treatment)</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Activation - radiation effects</topic><topic>Flavoproteins - metabolism</topic><topic>Gamma Rays</topic><topic>Humans</topic><topic>Intracellular Membranes - drug effects</topic><topic>Intracellular Membranes - metabolism</topic><topic>Intracellular Membranes - radiation effects</topic><topic>Jurkat Cells</topic><topic>Medical sciences</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - radiation effects</topic><topic>Membrane Proteins - metabolism</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - radiation effects</topic><topic>Pharmacology. Drug treatments</topic><topic>Poly(ADP-ribose) Polymerases - metabolism</topic><topic>Proto-Oncogene Proteins c-bcl-2 - metabolism</topic><topic>Radiation Tolerance</topic><topic>Reactive Oxygen Species - pharmacology</topic><topic>Sphingosine - analogs & derivatives</topic><topic>Sphingosine - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Moon-Taek</creatorcontrib><creatorcontrib>Kim, Min-Jung</creatorcontrib><creatorcontrib>Kang, Young-Hee</creatorcontrib><creatorcontrib>Choi, Soon-Young</creatorcontrib><creatorcontrib>Lee, Jae-Hoon</creatorcontrib><creatorcontrib>Choi, Jung-A</creatorcontrib><creatorcontrib>Kang, Chang-Mo</creatorcontrib><creatorcontrib>Cho, Chul-Koo</creatorcontrib><creatorcontrib>Kang, Seongman</creatorcontrib><creatorcontrib>Bae, Sangwoo</creatorcontrib><creatorcontrib>Lee, Yun-Sil</creatorcontrib><creatorcontrib>Chung, Hee Yong</creatorcontrib><creatorcontrib>Lee, Su-Jae</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Moon-Taek</au><au>Kim, Min-Jung</au><au>Kang, Young-Hee</au><au>Choi, Soon-Young</au><au>Lee, Jae-Hoon</au><au>Choi, Jung-A</au><au>Kang, Chang-Mo</au><au>Cho, Chul-Koo</au><au>Kang, Seongman</au><au>Bae, Sangwoo</au><au>Lee, Yun-Sil</au><au>Chung, Hee Yong</au><au>Lee, Su-Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2005-02-15</date><risdate>2005</risdate><volume>105</volume><issue>4</issue><spage>1724</spage><epage>1733</epage><pages>1724-1733</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>The use of chemical modifiers as radiosensitizers in combination with low-dose irradiation may increase the therapeutic effect on cancer by overcoming a high apoptotic threshold. Here, we showed that phytosphingosine treatment in combination with γ-radiation enhanced apoptotic cell death of radiation-resistant human T-cell lymphoma in a caspase-independent manner. Combination treatment induced an increase in intracellular reactive oxygen species (ROS) level, mitochondrial relocalization of B-cell lymphoma-2(Bcl-2)-associated X protein (Bax), poly-adenosine diphosphate (ADP)-ribose polymerase 1 (PARP-1) activation, and nuclear translocation of apoptosis-inducing factor (AIF). siRNA targeting of AIF effectively protected cells from the combination treatment-induced cell death. An antioxidant, N-acetyl-L-cysteine (NAC), inhibited Bax relocalization and AIF translocation but not PARP-1 activation. Moreover, transfection of Bax-siRNA significantly inhibited AIF translocation. Pretreatment of PARP-1 inhibitor, DPQ (3,4-dihydro-5-[4-(1-piperidinyl)-butoxy]-1(2H)-isoquinolinone), or PARP-1-siRNA also partially attenuated AIF translocation, whereas the same treatment did not affect intracellular ROS level and Bax redistribution. Taken together, these results demonstrate that enhancement of cell death of radiation-resistant cancer cells by phytosphingosine treatment in combination with γ-radiation is mediated by nuclear translocation of AIF, which is in turn mediated both by ROS-dependent Bax relocalization and ROS-independent PARP-1 activation. The molecular signaling pathways that we elucidated in this study may provide potential drug targets for radiation sensitization of cancers refractive to radiation therapy. (Blood. 2005;105:1724-1733)</abstract><cop>Washington, DC</cop><pub>Elsevier Inc</pub><pmid>15486061</pmid><doi>10.1182/blood-2004-07-2938</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-4971 |
ispartof | Blood, 2005-02, Vol.105 (4), p.1724-1733 |
issn | 0006-4971 1528-0020 |
language | eng |
recordid | cdi_proquest_miscellaneous_67399988 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Active Transport, Cell Nucleus - drug effects Active Transport, Cell Nucleus - radiation effects Antineoplastic agents Apoptosis - drug effects Apoptosis - radiation effects Apoptosis Inducing Factor bcl-2-Associated X Protein Biological and medical sciences Cell Nucleus - drug effects Cell Nucleus - metabolism Cell Nucleus - radiation effects Clone Cells Combined Modality Therapy Combined treatments (chemotherapy of immunotherapy associated with an other treatment) Enzyme Activation - drug effects Enzyme Activation - radiation effects Flavoproteins - metabolism Gamma Rays Humans Intracellular Membranes - drug effects Intracellular Membranes - metabolism Intracellular Membranes - radiation effects Jurkat Cells Medical sciences Membrane Potentials - drug effects Membrane Potentials - radiation effects Membrane Proteins - metabolism Mitochondria - drug effects Mitochondria - metabolism Mitochondria - radiation effects Pharmacology. Drug treatments Poly(ADP-ribose) Polymerases - metabolism Proto-Oncogene Proteins c-bcl-2 - metabolism Radiation Tolerance Reactive Oxygen Species - pharmacology Sphingosine - analogs & derivatives Sphingosine - pharmacology |
title | Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phytosphingosine%20in%20combination%20with%20ionizing%20radiation%20enhances%20apoptotic%20cell%20death%20in%20radiation-resistant%20cancer%20cells%20through%20ROS-dependent%20and%20-independent%20AIF%20release&rft.jtitle=Blood&rft.au=Park,%20Moon-Taek&rft.date=2005-02-15&rft.volume=105&rft.issue=4&rft.spage=1724&rft.epage=1733&rft.pages=1724-1733&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood-2004-07-2938&rft_dat=%3Cproquest_cross%3E67399988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67399988&rft_id=info:pmid/15486061&rft_els_id=S0006497120459014&rfr_iscdi=true |