Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release

The use of chemical modifiers as radiosensitizers in combination with low-dose irradiation may increase the therapeutic effect on cancer by overcoming a high apoptotic threshold. Here, we showed that phytosphingosine treatment in combination with γ-radiation enhanced apoptotic cell death of radiatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2005-02, Vol.105 (4), p.1724-1733
Hauptverfasser: Park, Moon-Taek, Kim, Min-Jung, Kang, Young-Hee, Choi, Soon-Young, Lee, Jae-Hoon, Choi, Jung-A, Kang, Chang-Mo, Cho, Chul-Koo, Kang, Seongman, Bae, Sangwoo, Lee, Yun-Sil, Chung, Hee Yong, Lee, Su-Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1733
container_issue 4
container_start_page 1724
container_title Blood
container_volume 105
creator Park, Moon-Taek
Kim, Min-Jung
Kang, Young-Hee
Choi, Soon-Young
Lee, Jae-Hoon
Choi, Jung-A
Kang, Chang-Mo
Cho, Chul-Koo
Kang, Seongman
Bae, Sangwoo
Lee, Yun-Sil
Chung, Hee Yong
Lee, Su-Jae
description The use of chemical modifiers as radiosensitizers in combination with low-dose irradiation may increase the therapeutic effect on cancer by overcoming a high apoptotic threshold. Here, we showed that phytosphingosine treatment in combination with γ-radiation enhanced apoptotic cell death of radiation-resistant human T-cell lymphoma in a caspase-independent manner. Combination treatment induced an increase in intracellular reactive oxygen species (ROS) level, mitochondrial relocalization of B-cell lymphoma-2(Bcl-2)-associated X protein (Bax), poly-adenosine diphosphate (ADP)-ribose polymerase 1 (PARP-1) activation, and nuclear translocation of apoptosis-inducing factor (AIF). siRNA targeting of AIF effectively protected cells from the combination treatment-induced cell death. An antioxidant, N-acetyl-L-cysteine (NAC), inhibited Bax relocalization and AIF translocation but not PARP-1 activation. Moreover, transfection of Bax-siRNA significantly inhibited AIF translocation. Pretreatment of PARP-1 inhibitor, DPQ (3,4-dihydro-5-[4-(1-piperidinyl)-butoxy]-1(2H)-isoquinolinone), or PARP-1-siRNA also partially attenuated AIF translocation, whereas the same treatment did not affect intracellular ROS level and Bax redistribution. Taken together, these results demonstrate that enhancement of cell death of radiation-resistant cancer cells by phytosphingosine treatment in combination with γ-radiation is mediated by nuclear translocation of AIF, which is in turn mediated both by ROS-dependent Bax relocalization and ROS-independent PARP-1 activation. The molecular signaling pathways that we elucidated in this study may provide potential drug targets for radiation sensitization of cancers refractive to radiation therapy. (Blood. 2005;105:1724-1733)
doi_str_mv 10.1182/blood-2004-07-2938
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67399988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120459014</els_id><sourcerecordid>67399988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3438-5c8341fcdd078815561257883a08f0c1f86259151654aec561eca8d73d0ced533</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhBVggb2BnuI7jxJHYVBWFSpWK-FlbHvumMcrYwfaAyjPxkDidkWbHylfX3zm6OoeQlxzecq6ad9s5RscagJZBz5pBqEdkw2WjGEADj8kGADrWDj0_I89y_gHAW9HIp-SMy1Z10PEN-ft5ui8xL5MPdzH7gNQHauNu64MpPgb625eJ1sH_qQRNxvnDHsNkgsVMzRKXEou31OI8U4dmFYQTyhJmn4sJhdpVkh7ATMuU4v5uol9uvzKHCwaHFTHBUebDaXFxfUUTzmgyPidPRjNnfHF8z8n3qw_fLj-xm9uP15cXN8yKVigmrRItH61z0CvFpex4I-skDKgRLB9V18iBS97J1qCt32iNcr1wYNFJIc7Jm4PvkuLPPeaidz6vR5uAcZ9114thGKrhOWkOoE0x54SjXpLfmXSvOei1I_3QkV470tDrtaMqenV032936E6SYykVeH0ETLZmHlNNzecT1w1ty4eucu8PHNYsfnlMOluPNWHnE9qiXfT_u-Mf7hay7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67399988</pqid></control><display><type>article</type><title>Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Park, Moon-Taek ; Kim, Min-Jung ; Kang, Young-Hee ; Choi, Soon-Young ; Lee, Jae-Hoon ; Choi, Jung-A ; Kang, Chang-Mo ; Cho, Chul-Koo ; Kang, Seongman ; Bae, Sangwoo ; Lee, Yun-Sil ; Chung, Hee Yong ; Lee, Su-Jae</creator><creatorcontrib>Park, Moon-Taek ; Kim, Min-Jung ; Kang, Young-Hee ; Choi, Soon-Young ; Lee, Jae-Hoon ; Choi, Jung-A ; Kang, Chang-Mo ; Cho, Chul-Koo ; Kang, Seongman ; Bae, Sangwoo ; Lee, Yun-Sil ; Chung, Hee Yong ; Lee, Su-Jae</creatorcontrib><description>The use of chemical modifiers as radiosensitizers in combination with low-dose irradiation may increase the therapeutic effect on cancer by overcoming a high apoptotic threshold. Here, we showed that phytosphingosine treatment in combination with γ-radiation enhanced apoptotic cell death of radiation-resistant human T-cell lymphoma in a caspase-independent manner. Combination treatment induced an increase in intracellular reactive oxygen species (ROS) level, mitochondrial relocalization of B-cell lymphoma-2(Bcl-2)-associated X protein (Bax), poly-adenosine diphosphate (ADP)-ribose polymerase 1 (PARP-1) activation, and nuclear translocation of apoptosis-inducing factor (AIF). siRNA targeting of AIF effectively protected cells from the combination treatment-induced cell death. An antioxidant, N-acetyl-L-cysteine (NAC), inhibited Bax relocalization and AIF translocation but not PARP-1 activation. Moreover, transfection of Bax-siRNA significantly inhibited AIF translocation. Pretreatment of PARP-1 inhibitor, DPQ (3,4-dihydro-5-[4-(1-piperidinyl)-butoxy]-1(2H)-isoquinolinone), or PARP-1-siRNA also partially attenuated AIF translocation, whereas the same treatment did not affect intracellular ROS level and Bax redistribution. Taken together, these results demonstrate that enhancement of cell death of radiation-resistant cancer cells by phytosphingosine treatment in combination with γ-radiation is mediated by nuclear translocation of AIF, which is in turn mediated both by ROS-dependent Bax relocalization and ROS-independent PARP-1 activation. The molecular signaling pathways that we elucidated in this study may provide potential drug targets for radiation sensitization of cancers refractive to radiation therapy. (Blood. 2005;105:1724-1733)</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood-2004-07-2938</identifier><identifier>PMID: 15486061</identifier><language>eng</language><publisher>Washington, DC: Elsevier Inc</publisher><subject>Active Transport, Cell Nucleus - drug effects ; Active Transport, Cell Nucleus - radiation effects ; Antineoplastic agents ; Apoptosis - drug effects ; Apoptosis - radiation effects ; Apoptosis Inducing Factor ; bcl-2-Associated X Protein ; Biological and medical sciences ; Cell Nucleus - drug effects ; Cell Nucleus - metabolism ; Cell Nucleus - radiation effects ; Clone Cells ; Combined Modality Therapy ; Combined treatments (chemotherapy of immunotherapy associated with an other treatment) ; Enzyme Activation - drug effects ; Enzyme Activation - radiation effects ; Flavoproteins - metabolism ; Gamma Rays ; Humans ; Intracellular Membranes - drug effects ; Intracellular Membranes - metabolism ; Intracellular Membranes - radiation effects ; Jurkat Cells ; Medical sciences ; Membrane Potentials - drug effects ; Membrane Potentials - radiation effects ; Membrane Proteins - metabolism ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondria - radiation effects ; Pharmacology. Drug treatments ; Poly(ADP-ribose) Polymerases - metabolism ; Proto-Oncogene Proteins c-bcl-2 - metabolism ; Radiation Tolerance ; Reactive Oxygen Species - pharmacology ; Sphingosine - analogs &amp; derivatives ; Sphingosine - pharmacology</subject><ispartof>Blood, 2005-02, Vol.105 (4), p.1724-1733</ispartof><rights>2005 American Society of Hematology</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3438-5c8341fcdd078815561257883a08f0c1f86259151654aec561eca8d73d0ced533</citedby><cites>FETCH-LOGICAL-c3438-5c8341fcdd078815561257883a08f0c1f86259151654aec561eca8d73d0ced533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16944196$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15486061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Moon-Taek</creatorcontrib><creatorcontrib>Kim, Min-Jung</creatorcontrib><creatorcontrib>Kang, Young-Hee</creatorcontrib><creatorcontrib>Choi, Soon-Young</creatorcontrib><creatorcontrib>Lee, Jae-Hoon</creatorcontrib><creatorcontrib>Choi, Jung-A</creatorcontrib><creatorcontrib>Kang, Chang-Mo</creatorcontrib><creatorcontrib>Cho, Chul-Koo</creatorcontrib><creatorcontrib>Kang, Seongman</creatorcontrib><creatorcontrib>Bae, Sangwoo</creatorcontrib><creatorcontrib>Lee, Yun-Sil</creatorcontrib><creatorcontrib>Chung, Hee Yong</creatorcontrib><creatorcontrib>Lee, Su-Jae</creatorcontrib><title>Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release</title><title>Blood</title><addtitle>Blood</addtitle><description>The use of chemical modifiers as radiosensitizers in combination with low-dose irradiation may increase the therapeutic effect on cancer by overcoming a high apoptotic threshold. Here, we showed that phytosphingosine treatment in combination with γ-radiation enhanced apoptotic cell death of radiation-resistant human T-cell lymphoma in a caspase-independent manner. Combination treatment induced an increase in intracellular reactive oxygen species (ROS) level, mitochondrial relocalization of B-cell lymphoma-2(Bcl-2)-associated X protein (Bax), poly-adenosine diphosphate (ADP)-ribose polymerase 1 (PARP-1) activation, and nuclear translocation of apoptosis-inducing factor (AIF). siRNA targeting of AIF effectively protected cells from the combination treatment-induced cell death. An antioxidant, N-acetyl-L-cysteine (NAC), inhibited Bax relocalization and AIF translocation but not PARP-1 activation. Moreover, transfection of Bax-siRNA significantly inhibited AIF translocation. Pretreatment of PARP-1 inhibitor, DPQ (3,4-dihydro-5-[4-(1-piperidinyl)-butoxy]-1(2H)-isoquinolinone), or PARP-1-siRNA also partially attenuated AIF translocation, whereas the same treatment did not affect intracellular ROS level and Bax redistribution. Taken together, these results demonstrate that enhancement of cell death of radiation-resistant cancer cells by phytosphingosine treatment in combination with γ-radiation is mediated by nuclear translocation of AIF, which is in turn mediated both by ROS-dependent Bax relocalization and ROS-independent PARP-1 activation. The molecular signaling pathways that we elucidated in this study may provide potential drug targets for radiation sensitization of cancers refractive to radiation therapy. (Blood. 2005;105:1724-1733)</description><subject>Active Transport, Cell Nucleus - drug effects</subject><subject>Active Transport, Cell Nucleus - radiation effects</subject><subject>Antineoplastic agents</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - radiation effects</subject><subject>Apoptosis Inducing Factor</subject><subject>bcl-2-Associated X Protein</subject><subject>Biological and medical sciences</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Nucleus - radiation effects</subject><subject>Clone Cells</subject><subject>Combined Modality Therapy</subject><subject>Combined treatments (chemotherapy of immunotherapy associated with an other treatment)</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Activation - radiation effects</subject><subject>Flavoproteins - metabolism</subject><subject>Gamma Rays</subject><subject>Humans</subject><subject>Intracellular Membranes - drug effects</subject><subject>Intracellular Membranes - metabolism</subject><subject>Intracellular Membranes - radiation effects</subject><subject>Jurkat Cells</subject><subject>Medical sciences</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - radiation effects</subject><subject>Membrane Proteins - metabolism</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - radiation effects</subject><subject>Pharmacology. Drug treatments</subject><subject>Poly(ADP-ribose) Polymerases - metabolism</subject><subject>Proto-Oncogene Proteins c-bcl-2 - metabolism</subject><subject>Radiation Tolerance</subject><subject>Reactive Oxygen Species - pharmacology</subject><subject>Sphingosine - analogs &amp; derivatives</subject><subject>Sphingosine - pharmacology</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EokPhBVggb2BnuI7jxJHYVBWFSpWK-FlbHvumMcrYwfaAyjPxkDidkWbHylfX3zm6OoeQlxzecq6ad9s5RscagJZBz5pBqEdkw2WjGEADj8kGADrWDj0_I89y_gHAW9HIp-SMy1Z10PEN-ft5ui8xL5MPdzH7gNQHauNu64MpPgb625eJ1sH_qQRNxvnDHsNkgsVMzRKXEou31OI8U4dmFYQTyhJmn4sJhdpVkh7ATMuU4v5uol9uvzKHCwaHFTHBUebDaXFxfUUTzmgyPidPRjNnfHF8z8n3qw_fLj-xm9uP15cXN8yKVigmrRItH61z0CvFpex4I-skDKgRLB9V18iBS97J1qCt32iNcr1wYNFJIc7Jm4PvkuLPPeaidz6vR5uAcZ9114thGKrhOWkOoE0x54SjXpLfmXSvOei1I_3QkV470tDrtaMqenV032936E6SYykVeH0ETLZmHlNNzecT1w1ty4eucu8PHNYsfnlMOluPNWHnE9qiXfT_u-Mf7hay7Q</recordid><startdate>20050215</startdate><enddate>20050215</enddate><creator>Park, Moon-Taek</creator><creator>Kim, Min-Jung</creator><creator>Kang, Young-Hee</creator><creator>Choi, Soon-Young</creator><creator>Lee, Jae-Hoon</creator><creator>Choi, Jung-A</creator><creator>Kang, Chang-Mo</creator><creator>Cho, Chul-Koo</creator><creator>Kang, Seongman</creator><creator>Bae, Sangwoo</creator><creator>Lee, Yun-Sil</creator><creator>Chung, Hee Yong</creator><creator>Lee, Su-Jae</creator><general>Elsevier Inc</general><general>The Americain Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050215</creationdate><title>Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release</title><author>Park, Moon-Taek ; Kim, Min-Jung ; Kang, Young-Hee ; Choi, Soon-Young ; Lee, Jae-Hoon ; Choi, Jung-A ; Kang, Chang-Mo ; Cho, Chul-Koo ; Kang, Seongman ; Bae, Sangwoo ; Lee, Yun-Sil ; Chung, Hee Yong ; Lee, Su-Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3438-5c8341fcdd078815561257883a08f0c1f86259151654aec561eca8d73d0ced533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Active Transport, Cell Nucleus - drug effects</topic><topic>Active Transport, Cell Nucleus - radiation effects</topic><topic>Antineoplastic agents</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - radiation effects</topic><topic>Apoptosis Inducing Factor</topic><topic>bcl-2-Associated X Protein</topic><topic>Biological and medical sciences</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Nucleus - radiation effects</topic><topic>Clone Cells</topic><topic>Combined Modality Therapy</topic><topic>Combined treatments (chemotherapy of immunotherapy associated with an other treatment)</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Activation - radiation effects</topic><topic>Flavoproteins - metabolism</topic><topic>Gamma Rays</topic><topic>Humans</topic><topic>Intracellular Membranes - drug effects</topic><topic>Intracellular Membranes - metabolism</topic><topic>Intracellular Membranes - radiation effects</topic><topic>Jurkat Cells</topic><topic>Medical sciences</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - radiation effects</topic><topic>Membrane Proteins - metabolism</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - radiation effects</topic><topic>Pharmacology. Drug treatments</topic><topic>Poly(ADP-ribose) Polymerases - metabolism</topic><topic>Proto-Oncogene Proteins c-bcl-2 - metabolism</topic><topic>Radiation Tolerance</topic><topic>Reactive Oxygen Species - pharmacology</topic><topic>Sphingosine - analogs &amp; derivatives</topic><topic>Sphingosine - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Moon-Taek</creatorcontrib><creatorcontrib>Kim, Min-Jung</creatorcontrib><creatorcontrib>Kang, Young-Hee</creatorcontrib><creatorcontrib>Choi, Soon-Young</creatorcontrib><creatorcontrib>Lee, Jae-Hoon</creatorcontrib><creatorcontrib>Choi, Jung-A</creatorcontrib><creatorcontrib>Kang, Chang-Mo</creatorcontrib><creatorcontrib>Cho, Chul-Koo</creatorcontrib><creatorcontrib>Kang, Seongman</creatorcontrib><creatorcontrib>Bae, Sangwoo</creatorcontrib><creatorcontrib>Lee, Yun-Sil</creatorcontrib><creatorcontrib>Chung, Hee Yong</creatorcontrib><creatorcontrib>Lee, Su-Jae</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Moon-Taek</au><au>Kim, Min-Jung</au><au>Kang, Young-Hee</au><au>Choi, Soon-Young</au><au>Lee, Jae-Hoon</au><au>Choi, Jung-A</au><au>Kang, Chang-Mo</au><au>Cho, Chul-Koo</au><au>Kang, Seongman</au><au>Bae, Sangwoo</au><au>Lee, Yun-Sil</au><au>Chung, Hee Yong</au><au>Lee, Su-Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2005-02-15</date><risdate>2005</risdate><volume>105</volume><issue>4</issue><spage>1724</spage><epage>1733</epage><pages>1724-1733</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>The use of chemical modifiers as radiosensitizers in combination with low-dose irradiation may increase the therapeutic effect on cancer by overcoming a high apoptotic threshold. Here, we showed that phytosphingosine treatment in combination with γ-radiation enhanced apoptotic cell death of radiation-resistant human T-cell lymphoma in a caspase-independent manner. Combination treatment induced an increase in intracellular reactive oxygen species (ROS) level, mitochondrial relocalization of B-cell lymphoma-2(Bcl-2)-associated X protein (Bax), poly-adenosine diphosphate (ADP)-ribose polymerase 1 (PARP-1) activation, and nuclear translocation of apoptosis-inducing factor (AIF). siRNA targeting of AIF effectively protected cells from the combination treatment-induced cell death. An antioxidant, N-acetyl-L-cysteine (NAC), inhibited Bax relocalization and AIF translocation but not PARP-1 activation. Moreover, transfection of Bax-siRNA significantly inhibited AIF translocation. Pretreatment of PARP-1 inhibitor, DPQ (3,4-dihydro-5-[4-(1-piperidinyl)-butoxy]-1(2H)-isoquinolinone), or PARP-1-siRNA also partially attenuated AIF translocation, whereas the same treatment did not affect intracellular ROS level and Bax redistribution. Taken together, these results demonstrate that enhancement of cell death of radiation-resistant cancer cells by phytosphingosine treatment in combination with γ-radiation is mediated by nuclear translocation of AIF, which is in turn mediated both by ROS-dependent Bax relocalization and ROS-independent PARP-1 activation. The molecular signaling pathways that we elucidated in this study may provide potential drug targets for radiation sensitization of cancers refractive to radiation therapy. (Blood. 2005;105:1724-1733)</abstract><cop>Washington, DC</cop><pub>Elsevier Inc</pub><pmid>15486061</pmid><doi>10.1182/blood-2004-07-2938</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-4971
ispartof Blood, 2005-02, Vol.105 (4), p.1724-1733
issn 0006-4971
1528-0020
language eng
recordid cdi_proquest_miscellaneous_67399988
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Active Transport, Cell Nucleus - drug effects
Active Transport, Cell Nucleus - radiation effects
Antineoplastic agents
Apoptosis - drug effects
Apoptosis - radiation effects
Apoptosis Inducing Factor
bcl-2-Associated X Protein
Biological and medical sciences
Cell Nucleus - drug effects
Cell Nucleus - metabolism
Cell Nucleus - radiation effects
Clone Cells
Combined Modality Therapy
Combined treatments (chemotherapy of immunotherapy associated with an other treatment)
Enzyme Activation - drug effects
Enzyme Activation - radiation effects
Flavoproteins - metabolism
Gamma Rays
Humans
Intracellular Membranes - drug effects
Intracellular Membranes - metabolism
Intracellular Membranes - radiation effects
Jurkat Cells
Medical sciences
Membrane Potentials - drug effects
Membrane Potentials - radiation effects
Membrane Proteins - metabolism
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondria - radiation effects
Pharmacology. Drug treatments
Poly(ADP-ribose) Polymerases - metabolism
Proto-Oncogene Proteins c-bcl-2 - metabolism
Radiation Tolerance
Reactive Oxygen Species - pharmacology
Sphingosine - analogs & derivatives
Sphingosine - pharmacology
title Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phytosphingosine%20in%20combination%20with%20ionizing%20radiation%20enhances%20apoptotic%20cell%20death%20in%20radiation-resistant%20cancer%20cells%20through%20ROS-dependent%20and%20-independent%20AIF%20release&rft.jtitle=Blood&rft.au=Park,%20Moon-Taek&rft.date=2005-02-15&rft.volume=105&rft.issue=4&rft.spage=1724&rft.epage=1733&rft.pages=1724-1733&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood-2004-07-2938&rft_dat=%3Cproquest_cross%3E67399988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67399988&rft_id=info:pmid/15486061&rft_els_id=S0006497120459014&rfr_iscdi=true