Predicting the diffusion coefficient of water vapor through glassy HPMC films at different environmental conditions using the free volume additivity approach

Prediction of diffusion coefficient of polymer materials is important in the pharmaceutical research and becomes the aim of this paper. This paper bases the prediction method on the estimation of the polymer fractional free volume at different environmental conditions. Focussing on glassy polymers,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmaceutical sciences 2009-07, Vol.37 (5), p.545-554
Hauptverfasser: Laksmana, Fesia Lestari, Hartman Kok, Paul Jean Antoine, Vromans, Herman, Van der Voort Maarschalk, Kees
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 554
container_issue 5
container_start_page 545
container_title European journal of pharmaceutical sciences
container_volume 37
creator Laksmana, Fesia Lestari
Hartman Kok, Paul Jean Antoine
Vromans, Herman
Van der Voort Maarschalk, Kees
description Prediction of diffusion coefficient of polymer materials is important in the pharmaceutical research and becomes the aim of this paper. This paper bases the prediction method on the estimation of the polymer fractional free volume at different environmental conditions. Focussing on glassy polymers, the free volumes of polymer films were estimated using the model of Vrentas et al. [J.S. Vrentas, J.L. Duda, H.-C. Ling, Antiplasticization and volumetric behavior in glassy polymers, Macromolecules 21 (1988) 1470–1475]. The required data are the moisture sorption and glass transition temperature data, which were measured on various hydroxypropyl methylcellulose (used as a model material) free films at different water activities. The temperature and molecular weight particularly determine the free volume of the polymer, while the sorbed water can either decease or increase the specific free volume of the polymer. At high water activity, the amount of water sorbed in the film increases to such level that the direct free volume addition by water becomes proportional to the contribution of the polymer itself. This confirms the importance of considering the environmental effect on the diffusivity of polymer during coating material selection. The presented approach enables the prediction of the diffusivity at any given relevant material variable and therefore has the potency to be used as a formulation development tool.
doi_str_mv 10.1016/j.ejps.2009.04.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67399381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928098709001237</els_id><sourcerecordid>67399381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-a5f362393dd1acc0c7d4310f71c39084f85341ac1ec3ed47113704ee15d253973</originalsourceid><addsrcrecordid>eNp9kcGO0zAURSMEYsrAD7BA3sAu5Tl2altig6qBQRrELGBtGfu5dZXExU6C-jH8K860GnasbOmde5_lU1WvKawp0M37wxoPx7xuANQa-BoofVKtqBSqBtHA02oFqpE1KCmuqhc5HwBgIwU8r66o4qCUbFfVn_uELtgxDDsy7pG44P2UQxyIjeh9sAGHkURPfpsRE5nNMaYCpjjt9mTXmZxP5Pb-65b40PWZmPGhAdOSwmEOKQ59uZuu9A0ujKU5k7Lgss4nRDLHbuqRGLfM5zCeiDkeUzR2_7J65k2X8dXlvK5-fLr5vr2t7759_rL9eFdb3sJYm9azTcMUc44aa8EKxxkFL6hlCiT3smW8TChaho4LSpkAjkhb17RMCXZdvTv3lrW_Jsyj7kO22HVmwDhlvRFMKSZpAZszaFPMOaHXxxR6k06agl6k6INepOhFigaui5QSenNpn3726P5FLhYK8PYCmGxN55MZbMiPXEM3knMhC_fhzGH5izlg0nnxY4vBhHbULob_veMv83Wuag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67399381</pqid></control><display><type>article</type><title>Predicting the diffusion coefficient of water vapor through glassy HPMC films at different environmental conditions using the free volume additivity approach</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Laksmana, Fesia Lestari ; Hartman Kok, Paul Jean Antoine ; Vromans, Herman ; Van der Voort Maarschalk, Kees</creator><creatorcontrib>Laksmana, Fesia Lestari ; Hartman Kok, Paul Jean Antoine ; Vromans, Herman ; Van der Voort Maarschalk, Kees</creatorcontrib><description>Prediction of diffusion coefficient of polymer materials is important in the pharmaceutical research and becomes the aim of this paper. This paper bases the prediction method on the estimation of the polymer fractional free volume at different environmental conditions. Focussing on glassy polymers, the free volumes of polymer films were estimated using the model of Vrentas et al. [J.S. Vrentas, J.L. Duda, H.-C. Ling, Antiplasticization and volumetric behavior in glassy polymers, Macromolecules 21 (1988) 1470–1475]. The required data are the moisture sorption and glass transition temperature data, which were measured on various hydroxypropyl methylcellulose (used as a model material) free films at different water activities. The temperature and molecular weight particularly determine the free volume of the polymer, while the sorbed water can either decease or increase the specific free volume of the polymer. At high water activity, the amount of water sorbed in the film increases to such level that the direct free volume addition by water becomes proportional to the contribution of the polymer itself. This confirms the importance of considering the environmental effect on the diffusivity of polymer during coating material selection. The presented approach enables the prediction of the diffusivity at any given relevant material variable and therefore has the potency to be used as a formulation development tool.</description><identifier>ISSN: 0928-0987</identifier><identifier>EISSN: 1879-0720</identifier><identifier>DOI: 10.1016/j.ejps.2009.04.011</identifier><identifier>PMID: 19409985</identifier><language>eng</language><publisher>Kindlington: Elsevier B.V</publisher><subject>Adsorption ; Biological and medical sciences ; Chemistry, Pharmaceutical ; Diffusion ; Diffusion coefficient ; Free volume ; General pharmacology ; Glass transition temperature ; Glassy polymer ; Hypromellose Derivatives ; Medical sciences ; Methylcellulose - analogs &amp; derivatives ; Methylcellulose - chemistry ; Models, Chemical ; Moisture sorption ; Molecular Weight ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Phase Transition ; Polymers - chemistry ; Solubility ; Tablets, Enteric-Coated ; Transition Temperature ; Volatilization ; Water - chemistry</subject><ispartof>European journal of pharmaceutical sciences, 2009-07, Vol.37 (5), p.545-554</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-a5f362393dd1acc0c7d4310f71c39084f85341ac1ec3ed47113704ee15d253973</citedby><cites>FETCH-LOGICAL-c450t-a5f362393dd1acc0c7d4310f71c39084f85341ac1ec3ed47113704ee15d253973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejps.2009.04.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21684478$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19409985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laksmana, Fesia Lestari</creatorcontrib><creatorcontrib>Hartman Kok, Paul Jean Antoine</creatorcontrib><creatorcontrib>Vromans, Herman</creatorcontrib><creatorcontrib>Van der Voort Maarschalk, Kees</creatorcontrib><title>Predicting the diffusion coefficient of water vapor through glassy HPMC films at different environmental conditions using the free volume additivity approach</title><title>European journal of pharmaceutical sciences</title><addtitle>Eur J Pharm Sci</addtitle><description>Prediction of diffusion coefficient of polymer materials is important in the pharmaceutical research and becomes the aim of this paper. This paper bases the prediction method on the estimation of the polymer fractional free volume at different environmental conditions. Focussing on glassy polymers, the free volumes of polymer films were estimated using the model of Vrentas et al. [J.S. Vrentas, J.L. Duda, H.-C. Ling, Antiplasticization and volumetric behavior in glassy polymers, Macromolecules 21 (1988) 1470–1475]. The required data are the moisture sorption and glass transition temperature data, which were measured on various hydroxypropyl methylcellulose (used as a model material) free films at different water activities. The temperature and molecular weight particularly determine the free volume of the polymer, while the sorbed water can either decease or increase the specific free volume of the polymer. At high water activity, the amount of water sorbed in the film increases to such level that the direct free volume addition by water becomes proportional to the contribution of the polymer itself. This confirms the importance of considering the environmental effect on the diffusivity of polymer during coating material selection. The presented approach enables the prediction of the diffusivity at any given relevant material variable and therefore has the potency to be used as a formulation development tool.</description><subject>Adsorption</subject><subject>Biological and medical sciences</subject><subject>Chemistry, Pharmaceutical</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Free volume</subject><subject>General pharmacology</subject><subject>Glass transition temperature</subject><subject>Glassy polymer</subject><subject>Hypromellose Derivatives</subject><subject>Medical sciences</subject><subject>Methylcellulose - analogs &amp; derivatives</subject><subject>Methylcellulose - chemistry</subject><subject>Models, Chemical</subject><subject>Moisture sorption</subject><subject>Molecular Weight</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Phase Transition</subject><subject>Polymers - chemistry</subject><subject>Solubility</subject><subject>Tablets, Enteric-Coated</subject><subject>Transition Temperature</subject><subject>Volatilization</subject><subject>Water - chemistry</subject><issn>0928-0987</issn><issn>1879-0720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcGO0zAURSMEYsrAD7BA3sAu5Tl2altig6qBQRrELGBtGfu5dZXExU6C-jH8K860GnasbOmde5_lU1WvKawp0M37wxoPx7xuANQa-BoofVKtqBSqBtHA02oFqpE1KCmuqhc5HwBgIwU8r66o4qCUbFfVn_uELtgxDDsy7pG44P2UQxyIjeh9sAGHkURPfpsRE5nNMaYCpjjt9mTXmZxP5Pb-65b40PWZmPGhAdOSwmEOKQ59uZuu9A0ujKU5k7Lgss4nRDLHbuqRGLfM5zCeiDkeUzR2_7J65k2X8dXlvK5-fLr5vr2t7759_rL9eFdb3sJYm9azTcMUc44aa8EKxxkFL6hlCiT3smW8TChaho4LSpkAjkhb17RMCXZdvTv3lrW_Jsyj7kO22HVmwDhlvRFMKSZpAZszaFPMOaHXxxR6k06agl6k6INepOhFigaui5QSenNpn3726P5FLhYK8PYCmGxN55MZbMiPXEM3knMhC_fhzGH5izlg0nnxY4vBhHbULob_veMv83Wuag</recordid><startdate>20090712</startdate><enddate>20090712</enddate><creator>Laksmana, Fesia Lestari</creator><creator>Hartman Kok, Paul Jean Antoine</creator><creator>Vromans, Herman</creator><creator>Van der Voort Maarschalk, Kees</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090712</creationdate><title>Predicting the diffusion coefficient of water vapor through glassy HPMC films at different environmental conditions using the free volume additivity approach</title><author>Laksmana, Fesia Lestari ; Hartman Kok, Paul Jean Antoine ; Vromans, Herman ; Van der Voort Maarschalk, Kees</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-a5f362393dd1acc0c7d4310f71c39084f85341ac1ec3ed47113704ee15d253973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adsorption</topic><topic>Biological and medical sciences</topic><topic>Chemistry, Pharmaceutical</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Free volume</topic><topic>General pharmacology</topic><topic>Glass transition temperature</topic><topic>Glassy polymer</topic><topic>Hypromellose Derivatives</topic><topic>Medical sciences</topic><topic>Methylcellulose - analogs &amp; derivatives</topic><topic>Methylcellulose - chemistry</topic><topic>Models, Chemical</topic><topic>Moisture sorption</topic><topic>Molecular Weight</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Phase Transition</topic><topic>Polymers - chemistry</topic><topic>Solubility</topic><topic>Tablets, Enteric-Coated</topic><topic>Transition Temperature</topic><topic>Volatilization</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laksmana, Fesia Lestari</creatorcontrib><creatorcontrib>Hartman Kok, Paul Jean Antoine</creatorcontrib><creatorcontrib>Vromans, Herman</creatorcontrib><creatorcontrib>Van der Voort Maarschalk, Kees</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laksmana, Fesia Lestari</au><au>Hartman Kok, Paul Jean Antoine</au><au>Vromans, Herman</au><au>Van der Voort Maarschalk, Kees</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the diffusion coefficient of water vapor through glassy HPMC films at different environmental conditions using the free volume additivity approach</atitle><jtitle>European journal of pharmaceutical sciences</jtitle><addtitle>Eur J Pharm Sci</addtitle><date>2009-07-12</date><risdate>2009</risdate><volume>37</volume><issue>5</issue><spage>545</spage><epage>554</epage><pages>545-554</pages><issn>0928-0987</issn><eissn>1879-0720</eissn><abstract>Prediction of diffusion coefficient of polymer materials is important in the pharmaceutical research and becomes the aim of this paper. This paper bases the prediction method on the estimation of the polymer fractional free volume at different environmental conditions. Focussing on glassy polymers, the free volumes of polymer films were estimated using the model of Vrentas et al. [J.S. Vrentas, J.L. Duda, H.-C. Ling, Antiplasticization and volumetric behavior in glassy polymers, Macromolecules 21 (1988) 1470–1475]. The required data are the moisture sorption and glass transition temperature data, which were measured on various hydroxypropyl methylcellulose (used as a model material) free films at different water activities. The temperature and molecular weight particularly determine the free volume of the polymer, while the sorbed water can either decease or increase the specific free volume of the polymer. At high water activity, the amount of water sorbed in the film increases to such level that the direct free volume addition by water becomes proportional to the contribution of the polymer itself. This confirms the importance of considering the environmental effect on the diffusivity of polymer during coating material selection. The presented approach enables the prediction of the diffusivity at any given relevant material variable and therefore has the potency to be used as a formulation development tool.</abstract><cop>Kindlington</cop><pub>Elsevier B.V</pub><pmid>19409985</pmid><doi>10.1016/j.ejps.2009.04.011</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-0987
ispartof European journal of pharmaceutical sciences, 2009-07, Vol.37 (5), p.545-554
issn 0928-0987
1879-0720
language eng
recordid cdi_proquest_miscellaneous_67399381
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Adsorption
Biological and medical sciences
Chemistry, Pharmaceutical
Diffusion
Diffusion coefficient
Free volume
General pharmacology
Glass transition temperature
Glassy polymer
Hypromellose Derivatives
Medical sciences
Methylcellulose - analogs & derivatives
Methylcellulose - chemistry
Models, Chemical
Moisture sorption
Molecular Weight
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Phase Transition
Polymers - chemistry
Solubility
Tablets, Enteric-Coated
Transition Temperature
Volatilization
Water - chemistry
title Predicting the diffusion coefficient of water vapor through glassy HPMC films at different environmental conditions using the free volume additivity approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20diffusion%20coefficient%20of%20water%20vapor%20through%20glassy%20HPMC%20films%20at%20different%20environmental%20conditions%20using%20the%20free%20volume%20additivity%20approach&rft.jtitle=European%20journal%20of%20pharmaceutical%20sciences&rft.au=Laksmana,%20Fesia%20Lestari&rft.date=2009-07-12&rft.volume=37&rft.issue=5&rft.spage=545&rft.epage=554&rft.pages=545-554&rft.issn=0928-0987&rft.eissn=1879-0720&rft_id=info:doi/10.1016/j.ejps.2009.04.011&rft_dat=%3Cproquest_cross%3E67399381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67399381&rft_id=info:pmid/19409985&rft_els_id=S0928098709001237&rfr_iscdi=true